Investigation of Aging Mechanisms in Lean NOx Traps

Investigation of Aging Mechanisms in Lean NOx Traps

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Lean NO(subscript x) traps (LNTs) represent a promising technology for the abatement of NO(subscript x) under lean conditions. Although LNTs are starting to find commercial application, the issue of catalyst durability remains problematic. LNT susceptibility to sulfur poisoning is the single most important factor determining effective catalyst lifetime. The NO(subscript x) storage element of the catalyst has a greater affinity for SO3 than it does for NO2, and the resulting sulfate is more stable than the stored nitrate. Although this sulfate can be removed from the catalyst by means of high temperature treatment under rich conditions, the required conditions give rise to deactivation mechanisms such as precious metal sintering, total surface area loss, and solid state reactions between the various oxides present. The principle objective of this project was to improve understanding of the mechanisms of lean NO(subscript x) trap aging, and to understand the effect of washcoat composition on catalyst aging characteristics. The approach utilized involved detailed characterization of model catalysts prior to and after aging, in tandem with measurement of catalyst performance in NO(subscript x) storage and reduction. In this manner, NO(subscript x) storage and reduction characteristics were correlated with the evolution of catalyst physico-chemical properties upon aging. Rather than using poorly characterized proprietary catalysts, or simple model catalysts of the Pt/BaO/Al2O3 type (representing the first generation of LNTs), Pt/Rh/BaO/Al2O3 catalysts were employed which also incorporated CeO2 or CeO2-ZrO2, representing a model system which more accurately reflects current LNT formulations. Catalysts were prepared in which the concentration of each of the main components was systematically varied: Pt (50, 75 or 100 g/ft3), Rh (10 or 20 g/ft3), BaO (15, 30 or 45 g/L), and either CeO2 (0, 50 or 100 g/L) or CeO2-ZrO2 (0, 50 or 100 g/L). A high surface area La-stabilized alumina was used to support the BaO phase. Catalysts were obtained by washcoating onto standard cordierite substrates, the total washcoat loading being set at 260 g/L. La-stabilized alumina was used as the balance. Subsequent to de-greening, the NO(subscript x) storage and reduction characteristics of the catalysts were evaluated on a bench reactor, after which the catalysts were aged on a bench reactor to the equivalent of ca. 75,000 miles of road aging using a published accelerated aging protocol. The aged catalysts were then subjected to the same evaluation proecdure used for the de-greened catalysts. In addition to the use of standard physico-chemical analytical techniques for studying the fresh and aged model catalysts, use was made of advanced analytical tools for characterizing their NO(subscript x) storage/reduction and sulfation/desulfation characteristics, such as Spatially resolved capillary-inlet Mass Spectrometry (SpaciMS) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).


Performance of a Perovskite-based Lean-NOX-trap Catalyst and Effects of Thermal Degradation and Sulfur Poisoning

Performance of a Perovskite-based Lean-NOX-trap Catalyst and Effects of Thermal Degradation and Sulfur Poisoning

Author: Crystle Constantinou

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Increases in vehicle exhaust emission regulations have led to research, development and improvements in catalytic converter technologies for gasoline-powered vehicles since the 1970s. Nowadays, there are strict regulations and standards for diesel engines as well, and one of the regulated species is nitrogen oxides (NOX). The lean NOX trap (LNT) catalyst has been studied and developed for use in lean burn (of which diesel is an example) engine exhaust as a technology to reduce NOX to N2. Typical LNT catalysts contain Pt, which catalyzes NO oxidation and NOX reduction, and an alkali or alkaline earth material for NOX storage via nitrate formation. The catalyst is operated in a cyclic mode, with one phase of the cycle under oxidizing conditions where NOX is trapped, and a second phase, which is reductant-rich relative to O2, where stored NOX is reduced to N2. A recently developed catalyst uses a perovskite material as part of the LNT formulation for the oxidation reactions thereby eliminating the need for Pt in a LNT. This catalyst does include Pd and Rh, added to accommodate hydrocarbon oxidation and NO reduction, respectively. Ba was used as the trapping component, and Ce was also part of the formulation. NO oxidation kinetics over the fully-formulated and bare perovskite material were determined, with NO, O2 and NO2 orders being at or near 1, 1 and -1, respectively for both samples. The fully-formulated sample, which contains Ba supported on the perovskite, was evaluated in terms of NOX trapping ability and NOX reduction as a function of temperature and reduction phase properties. Trapping and overall performance increased with temperature to 375°C, primarily due to improved NO oxidation, as NO2 is more readily trapped, or better diffusion of nitrates away from the initial trapping sites. At higher temperatures nitrate stability decreased, thus decreasing the trapping ability. At these higher temperatures, a more significant amount of unreduced NOX formed during the reduction phase, primarily due to nitrate instability and decomposition and the relative rates of the NOX and oxygen storage (OS) components reduction reactions. Most of the chemistry observed was similar to that observed over Pt-based LNT catalysts. However, there were some distinct differences, including a stronger nitrate diffusion resistance at low temperature and a more significant reductant-induced nitrate decomposition reaction. The perovskite-based lean NOX trap (LNT) catalyst was also evaluated after thermal aging and sulfur exposure. NO oxidation, NOX trapping ability and NOX reduction as a function of temperature and reduction phase properties were evaluated. Similar overall performance trends were seen before and after degradation, however lower performance after thermal aging and sulfur exposure were seen due to sintering effects and possible build-up of S species. Although performance results show that most of the sulfur was removed after desulfation, some sulfur remained affecting the trapping and reduction capabilities as well as the water gas shift (WGS) extent at lower temperatures. The Oxygen storage capacity (OSC) on the other hand was maintained after the catalyst was exposed to thermal aging and sulfur poisoning then desulfation, all of which suggest that the perovskite or Pd components were irreversibly poisoned to some extent.


NOx Trap Catalysts and Technologies

NOx Trap Catalysts and Technologies

Author: Luca Lietti

Publisher: Royal Society of Chemistry

Published: 2018-06-13

Total Pages: 434

ISBN-13: 1788014758

DOWNLOAD EBOOK

Vehicle exhaust emissions, particularly from diesel cars, are considered to be a significant problem for the environment and human health. Lean NOx Trap (LNT) or NOx Storage/Reduction (NSR) technology is one of the current techniques used in the abatement of NOx from lean exhausts. Researchers are constantly searching for new inexpensive catalysts with high efficiency at low temperatures and negligible fuel penalties, to meet the challenges of this field. This book will be the first to comprehensively present the current research on this important area. Covering the technology used, from its development in the early 1990s up to the current state-of-the-art technologies and new legislation. Beginning with the fundamental aspects of the process, the discussion will cover the real application standard through to the detailed modelling of full scale catalysts. Scientists, academic and industrial researchers, engineers working in the automotive sector and technicians working on emission control will find this book an invaluable resource.


Lean NOx Trap Catalysis for Lean Burn Natural Gas Engines

Lean NOx Trap Catalysis for Lean Burn Natural Gas Engines

Author:

Publisher:

Published: 2004

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

As the nation's demand for energy grows along with concern for the environment, there is a pressing need for cleaner, more efficient forms of energy. The internal combustion engine is well established as one of the most reliable forms of power production. They are commercially available in power ranges from 0.5 kW to 6.5 MW, which make them suitable for a wide range of distributed power applications from small scale residential to large scale industrial. In addition, alternative fuels with domestic abundance, such as natural gas, can play a key role in weaning our nations dependence on foreign oil. Lean burn natural gas engines can achieve high efficiencies and can be conveniently placed anywhere natural gas supplies are available. However, the aftertreatment of Nox emissions presents a challenge in lean exhaust conditions. Unlike carbon monoxide and hydrocarbons, which can be catalytically reduced in lean exhaust, NOx emissions require a net reducing atmosphere for catalytic reduction. Unless this challenge of NOx reduction can be met, emissions regulations may restrict the implementation of highly efficient lean burn natural gas engines for stationary power applications. While the typical three-way catalyst is ineffective for NOx reduction under lean exhaust conditions, several emerging catalyst technologies have demonstrated potential. The three leading contenders for lean burn engine de-NOx are the Lean NOx Catalyst (LNC), Selective Catalytic Reduction (SCR) and the Lean Nox Trap (LNT). Similar to the principles of SCR, an LNT catalyst has the ability to store NOx under lean engine operation. Then, an intermittent rich condition is created causing the stored NOx to be released and subsequently reduced. However, unlike SCR, which uses urea injection to create the reducing atmosphere, the LNT can use the same fuel supplied to the engine as the reductant. LNT technology has demonstrated high reduction efficiencies in diesel applications where diesel fuel is the reducing agent. The premise of this research is to explore the application of Lean NOx Trap technology to a lean burn natural gas engine where natural gas is the reducing agent. Natural gas is primarily composed of methane, a highly stable hydrocarbon. The two primary challenges addressed by this research are the performance of the LNT in the temperature ranges experienced from lean natural gas combustion and the utilization of the highly stable methane as the reducing agent. The project used an 8.3 liter lean burn natural gas engine on a dynamometer to generate the lean exhaust conditions. The catalysts were packaged in a dual path aftertreatment system, and a set of valves were used to control the flow of exhaust to either leg during adsorption and regeneration.


Automotive Emissions Regulations and Exhaust Aftertreatment Systems

Automotive Emissions Regulations and Exhaust Aftertreatment Systems

Author: John Kasab

Publisher: SAE International

Published: 2020-08-31

Total Pages: 464

ISBN-13: 0768099560

DOWNLOAD EBOOK

The objective of this book is to present a fundamental development of the science and engineering underlying the design of exhaust aftertreatment systems for automotive internal combustion engines. No pre-requisite knowledge of the field is required: our objective is to acquaint the reader, whom we expect to be new to the field of emissions control, with the underlying principles, control methods, common problems, and fuel effects on catalytic exhaust aftertreatment devices. We do this in hope that they can better understand the previous and current generations of emissions control, and improve upon them. This book is designed for the engineer, researcher, designer, student, or any combination of those, who is concerned with the control of automotive exhaust emissions. It includes discussion of theory and fundamentals applicable to hardware development.