This book gives pharmaceutical scientists an up-to-date resource on protein aggregation and its consequences, and available methods to control or slow down the aggregation process. While significant progress has been made in the past decade, the current understanding of protein aggregation and its consequences is still immature. Prevention or even moderate inhibition of protein aggregation has been mostly experimental. The knowledge in this book can greatly help pharmaceutical scientists in the development of therapeutic proteins, and also instigate further scientific investigations in this area. This book fills such a need by providing an overview on the causes, consequences, characterization, and control of the aggregation of therapeutic proteins.
This volume collects the extended abstracts of 45 contributions of participants to the Seventh International Summer School on Aggregation Operators (AGOP 2013), held at Pamplona in July, 16-20, 2013. These contributions cover a very broad range, from the purely theoretical ones to those with a more applied focus. Moreover, the summaries of the plenary talks and tutorials given at the same workshop are included. Together they provide a good overview of recent trends in research in aggregation functions which can be of interest to both researchers in Physics or Mathematics working on the theoretical basis of aggregation functions, and to engineers who require them for applications.
Red blood cells in humans—and most other mammals—have a tendency to form aggregates with a characteristic face-to-face morphology, similar to a stack of coins. Known as rouleaux, these aggregates are a normally occurring phenomenon and have a major impact on blood rheology. What is the underlying mechanism that produces this pattern? Does this really happen in blood circulation? And do these rouleaux formations have a useful function? The first book to offer a comprehensive review of the subject, Red Blood Cell Aggregation tackles these and other questions related to red blood cell (RBC) aggregates. The book covers basic, clinical, and physiological aspects of this important biophysical phenomenon and integrates these areas with concepts in bioengineering. It brings together state-of-the-art research on the determinants, mechanisms, and measurement and effects of RBC aggregation as well as on variations and comparative aspects. After an introductory overview, the book outlines factors and conditions that affect RBC aggregation. It presents the two hypotheses—the bridging model and the depletion model—that provide potential mechanisms for the adhesive forces that lead to the regular packing of the cells in rouleaux formations. The book also reviews the methods used to quantify RBC aggregation in vitro, focusing on their importance in clinical practice. Chapters discuss the effect of RBC aggregation on the in vitro rheology of blood as well as on tube flow. The book also looks at what happens in the circulation when red blood cells aggregate and examines variations due to physiological and pathophysiological challenges. The concluding chapter explores the formation of red blood cell aggregates in other mammals. Written by leading researchers in the field, this is an invaluable resource for basic science, medical, and clinical researchers; graduate students; and clinicians interested in mammalian red blood cells.
Within the human-machine collaborations cultivated in the digital age, crafts and materials are playing an increasingly important role in forming various ways of matter aggregation for architecture. Based on the pedagogical exploration of the design studio--Matter Aggregation at UVA, the book seeks new values of wood craft for contemporary architectural design, by introducing digital design and robotic fabrication techniques into the design process for timber building. The book integrates explorations of traditional crafts with digital fabrication technique, establishing a digital crafting as a new field for contemporary practice. The book explores the computational mechanisms and diagrammatic grammar within these craft-based aggregation systems, paying close attention to geometrical configurations, material effects and fabrication details and take advantage of these qualities to produce a unique spatiality.
Research indicates that most neurodegenerative diseases, systemic amyloidoses and many others, arise from the misfolding and aggregation of an underlying protein. This is the first book to discuss significant achievements in protein structure-function relationships in biochemistry, molecular biology and molecular medicine. The authors summarize recent progress in the understanding of the relationships between protein misfolding, aggregation and development of protein deposition disorders.
This text covers in detail bacteria and yeasts, including an overall perspective of microbial aggregation as fundamental form and function, which is presented here to include systems still to be treated in detail.
This book introduces readers to the fundamentals of transportation problems under the fuzzy environment and its extensions. It also discusses the limitations and drawbacks of (1) recently proposed aggregation operators under the fuzzy environment and its various extensions; (2) recently proposed methods for solving transportation problems under the fuzzy environment; and (3) recently proposed methods for solving transportation problems under the intuitionistic fuzzy environment. In turn, the book proposes simplified methods to overcome these limitations.
This book describes how to address the analysis of aggregates and particles in protein pharmaceuticals, provides a comprehensive overview of current methods and integrated approaches used to quantify and characterize aggregates and particles, and discusses regulatory requirements. Analytical methods covered in the book include separation, light scattering, microscopy, and spectroscopy.
1. The increasing number of research papers appeared in the last years that either make use of aggregation functions or contribute to its theoretieal study asses its growing importance in the field of Fuzzy Logie and in others where uncertainty and imprecision play a relevant role. Since these papers are pub lished in many journals, few books and several proceedings of conferences, books on aggregation are partieularly welcome. To my knowledge, "Agrega tion Operators. New Trends and Applications" is the first book aiming at generality , and I take it as a honour to write this Foreword in response to the gentle demand of its editors, Radko Mesiar, Tomasa Calvo and Gaspar Mayor. My pleasure also derives from the fact that twenty years aga I was one of the first Spaniards interested in the study of aggregation functions, and this book includes work by several Spanish authors. The book contains nice and relevant original papers, authored by some of the most outstanding researchers in the field, and since it can serve, as the editors point out in the Preface, as a small handbook on aggregation, the book is very useful for those entering the subject for the first time. The book also contains apart dealing with potential areas of application, so it can be helpful in gaining insight on the future developments.