Agent-based modeling is a flexible and intuitive approach that is close to both data and theories, which gives it a special position in the majority of scientific communities. Agent models are as much tools of understanding, exploration and adaptation as they are media for interdisciplinary exchange. It is in this kind of framework that this book is situated, beginning with agent-based modeling of spatialized phenomena with a methodological and practical orientation. Through a governing example, taking inspiration from a real problem in epidemiology, this book proposes, with pedagogy and economy, a guide to good practices of agent modeling. The reader will thus be able to understand and put the modeling into practice and acquire a certain amount of autonomy. - Featuring the following well-known techniques and tools: Modeling, such as UML, Simulation, such as the NetLogo platform, Exploration methods, Adaptation using participative simulation
Whereas Volume 1 introduced the NetLogo platform as a means of prototyping simple models, this second volume focuses on the advanced use of NetLogo to connect both data and theories, making it ideal for the majority of scientific communities. The authors focus on agent-based modeling of spatialized phenomena with a methodological and practical orientation, demonstrating how advanced agent-based spatial simulation methods and technics can be implemented. This book provides theoretical and conceptual backgrounds, as well as algorithmic and technical insights, including code and applets, so that readers can test and re-use most of its content. - Illustrates advanced concepts and methods in agent-based spatial simulation - Features practical examples developed, and commented on, in a unique platform - Provides theoretical and conceptual backgrounds, as well as algorithmic and technical insights, including code and applets, so that readers can test and re-use most of its content
Generate and Analyze Multi-Level Data Spatial microsimulation involves the generation, analysis, and modeling of individual-level data allocated to geographical zones. Spatial Microsimulation with R is the first practical book to illustrate this approach in a modern statistical programming language. Get Insight into Complex Behaviors The book progresses from the principles underlying population synthesis toward more complex issues such as household allocation and using the results of spatial microsimulation for agent-based modeling. This equips you with the skills needed to apply the techniques to real-world situations. The book demonstrates methods for population synthesis by combining individual and geographically aggregated datasets using the recent R packages ipfp and mipfp. This approach represents the "best of both worlds" in terms of spatial resolution and person-level detail, overcoming issues of data confidentiality and reproducibility. Implement the Methods on Your Own Data Full of reproducible examples using code and data, the book is suitable for students and applied researchers in health, economics, transport, geography, and other fields that require individual-level data allocated to small geographic zones. By explaining how to use tools for modeling phenomena that vary over space, the book enhances your knowledge of complex systems and empowers you to provide evidence-based policy guidance.
A comprehensive and hands-on introduction to the core concepts, methods, and applications of agent-based modeling, including detailed NetLogo examples. The advent of widespread fast computing has enabled us to work on more complex problems and to build and analyze more complex models. This book provides an introduction to one of the primary methodologies for research in this new field of knowledge. Agent-based modeling (ABM) offers a new way of doing science: by conducting computer-based experiments. ABM is applicable to complex systems embedded in natural, social, and engineered contexts, across domains that range from engineering to ecology. An Introduction to Agent-Based Modeling offers a comprehensive description of the core concepts, methods, and applications of ABM. Its hands-on approach—with hundreds of examples and exercises using NetLogo—enables readers to begin constructing models immediately, regardless of experience or discipline. The book first describes the nature and rationale of agent-based modeling, then presents the methodology for designing and building ABMs, and finally discusses how to utilize ABMs to answer complex questions. Features in each chapter include step-by-step guides to developing models in the main text; text boxes with additional information and concepts; end-of-chapter explorations; and references and lists of relevant reading. There is also an accompanying website with all the models and code.
The work presented here illustrates, using the heavily utilized free software NetLogo, the main principles of agent-based spatial simulation. It will provide theoretical and conceptual backgrounds as well as algorithmic and technical insights, including code and applets, so that readers can test and re-use most of its content.
This volume is based on lectures delivered at the 2011 AMS Short Course on Evolutionary Game Dynamics, held January 4-5, 2011 in New Orleans, Louisiana. Evolutionary game theory studies basic types of social interactions in populations of players. It combines the strategic viewpoint of classical game theory (independent rational players trying to outguess each other) with population dynamics (successful strategies increase their frequencies). A substantial part of the appeal of evolutionary game theory comes from its highly diverse applications such as social dilemmas, the evolution of language, or mating behaviour in animals. Moreover, its methods are becoming increasingly popular in computer science, engineering, and control theory. They help to design and control multi-agent systems, often with a large number of agents (for instance, when routing drivers over highway networks or data packets over the Internet). While these fields have traditionally used a top down approach by directly controlling the behaviour of each agent in the system, attention has recently turned to an indirect approach allowing the agents to function independently while providing incentives that lead them to behave in the desired way. Instead of the traditional assumption of equilibrium behaviour, researchers opt increasingly for the evolutionary paradigm and consider the dynamics of behaviour in populations of agents employing simple, myopic decision rules.
Agent-based modeling is a new technique for understanding how the dynamics of biological, social, and other complex systems arise from the characteristics and behaviors of the agents making up these systems. This innovative textbook gives students and scientists the skills to design, implement, and analyze agent-based models. It starts with the fundamentals of modeling and provides an introduction to NetLogo, an easy-to-use, free, and powerful software platform. Nine chapters then each introduce an important modeling concept and show how to implement it using NetLogo. The book goes on to present strategies for finding the right level of model complexity and developing theory for agent behavior, and for analyzing and learning from models. Agent-Based and Individual-Based Modeling features concise and accessible text, numerous examples, and exercises using small but scientific models. The emphasis throughout is on analysis--such as software testing, theory development, robustness analysis, and understanding full models--and on design issues like optimizing model structure and finding good parameter values. The first hands-on introduction to agent-based modeling, from conceptual design to computer implementation to parameterization and analysis Provides an introduction to NetLogo with nine chapters introducing an important modeling concept and showing how to implement it using NetLogo Filled with examples and exercises, with updates and supplementary materials at http://www.railsback-grimm-abm-book.com/ Designed for students and researchers across the biological and social sciences Written by leading practitioners Leading universities that have adopted this book include: Amherst College Brigham Young University Carnegie Mellon University Cornell University Miami University Northwestern University Old Dominion University Portland State University Rhodes College Susquehanna University University College, Dublin University of Arizona University of British Columbia University of Michigan University of South Florida University of Texas at Austin University of Virginia
To fully understand not only the past, but also the trajectories, of human societies, we need a more dynamic view of human social systems. Agent-based modeling (ABM), which can create fine-scale models of behavior over time and space, may reveal important, general patterns of human activity. Agent-Based Modeling for Archaeology is the first ABM textbook designed for researchers studying the human past. Appropriate for scholars from archaeology, the digital humanities, and other social sciences, this book offers novices and more experienced ABM researchers a modular approach to learning ABM and using it effectively. Readers will find the necessary background, discussion of modeling techniques and traps, references, and algorithms to use ABM in their own work. They will also find engaging examples of how other scholars have applied ABM, ranging from the study of the intercontinental migration pathways of early hominins, to the weather–crop–population cycles of the American Southwest, to the trade networks of Ancient Rome. This textbook provides the foundations needed to simulate the complexity of past human societies, offering researchers a richer understanding of the past—and likely future—of our species.
This unique book brings together a comprehensive set of papers on the background, theory, technical issues and applications of agent-based modelling (ABM) within geographical systems. This collection of papers is an invaluable reference point for the experienced agent-based modeller as well those new to the area. Specific geographical issues such as handling scale and space are dealt with as well as practical advice from leading experts about designing and creating ABMs, handling complexity, visualising and validating model outputs. With contributions from many of the world’s leading research institutions, the latest applied research (micro and macro applications) from around the globe exemplify what can be achieved in geographical context. This book is relevant to researchers, postgraduate and advanced undergraduate students, and professionals in the areas of quantitative geography, spatial analysis, spatial modelling, social simulation modelling and geographical information sciences.
A ground-up approach to explaining dynamic spatial modelling for an interdisciplinary audience. Across broad areas of the environmental and social sciences, simulation models are an important way to study systems inaccessible to scientific experimental and observational methods, and also an essential complement to those more conventional approaches. The contemporary research literature is teeming with abstract simulation models whose presentation is mathematically demanding and requires a high level of knowledge of quantitative and computational methods and approaches. Furthermore, simulation models designed to represent specific systems and phenomena are often complicated, and, as a result, difficult to reconstruct from their descriptions in the literature. This book aims to provide a practical and accessible account of dynamic spatial modelling, while also equipping readers with a sound conceptual foundation in the subject, and a useful introduction to the wide-ranging literature. Spatial Simulation: Exploring Pattern and Process is organised around the idea that a small number of spatial processes underlie the wide variety of dynamic spatial models. Its central focus on three ‘building-blocks’ of dynamic spatial models – forces of attraction and segregation, individual mobile entities, and processes of spread – guides the reader to an understanding of the basis of many of the complicated models found in the research literature. The three building block models are presented in their simplest form and are progressively elaborated and related to real world process that can be represented using them. Introductory chapters cover essential background topics, particularly the relationships between pattern, process and spatiotemporal scale. Additional chapters consider how time and space can be represented in more complicated models, and methods for the analysis and evaluation of models. Finally, the three building block models are woven together in a more elaborate example to show how a complicated model can be assembled from relatively simple components. To aid understanding, more than 50 specific models described in the book are available online at patternandprocess.org for exploration in the freely available Netlogo platform. This book encourages readers to develop intuition for the abstract types of model that are likely to be appropriate for application in any specific context. Spatial Simulation: Exploring Pattern and Process will be of interest to undergraduate and graduate students taking courses in environmental, social, ecological and geographical disciplines. Researchers and professionals who require a non-specialist introduction will also find this book an invaluable guide to dynamic spatial simulation.