Affine Bernstein Problems and Monge-Ampere Equations

Affine Bernstein Problems and Monge-Ampere Equations

Author: An-Min Li

Publisher: World Scientific

Published: 2010

Total Pages: 193

ISBN-13: 9812814175

DOWNLOAD EBOOK

In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Amp re equations. From the methodical point of view, it introduces the solution of certain Monge-Amp re equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings.


Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

Author: Hiroyoshi Mitake

Publisher: Springer

Published: 2017-06-14

Total Pages: 233

ISBN-13: 3319542087

DOWNLOAD EBOOK

Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations.


Analysis of Monge–Ampère Equations

Analysis of Monge–Ampère Equations

Author: Nam Q. Le

Publisher: American Mathematical Society

Published: 2024-03-08

Total Pages: 599

ISBN-13: 1470476258

DOWNLOAD EBOOK

This book presents a systematic analysis of the Monge–Ampère equation, the linearized Monge–Ampère equation, and their applications, with emphasis on both interior and boundary theories. Starting from scratch, it gives an extensive survey of fundamental results, essential techniques, and intriguing phenomena in the solvability, geometry, and regularity of Monge–Ampère equations. It describes in depth diverse applications arising in geometry, fluid mechanics, meteorology, economics, and the calculus of variations. The modern treatment of boundary behaviors of solutions to Monge–Ampère equations, a very important topic of the theory, is thoroughly discussed. The book synthesizes many important recent advances, including Savin's boundary localization theorem, spectral theory, and interior and boundary regularity in Sobolev and Hölder spaces with optimal assumptions. It highlights geometric aspects of the theory and connections with adjacent research areas. This self-contained book provides the necessary background and techniques in convex geometry, real analysis, and partial differential equations, presents detailed proofs of all theorems, explains subtle constructions, and includes well over a hundred exercises. It can serve as an accessible text for graduate students as well as researchers interested in this subject.


Global Affine Differential Geometry of Hypersurfaces

Global Affine Differential Geometry of Hypersurfaces

Author: An-Min Li

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2015-08-17

Total Pages: 378

ISBN-13: 3110268892

DOWNLOAD EBOOK

This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry – as differential geometry in general – has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces. The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof.


Real and Complex Submanifolds

Real and Complex Submanifolds

Author: Young Jin Suh

Publisher: Springer

Published: 2014-12-05

Total Pages: 510

ISBN-13: 4431552154

DOWNLOAD EBOOK

Edited in collaboration with the Grassmann Research Group, this book contains many important articles delivered at the ICM 2014 Satellite Conference and the 18th International Workshop on Real and Complex Submanifolds, which was held at the National Institute for Mathematical Sciences, Daejeon, Republic of Korea, August 10–12, 2014. The book covers various aspects of differential geometry focused on submanifolds, symmetric spaces, Riemannian and Lorentzian manifolds, and Kähler and Grassmann manifolds.


Geometry And Topology Of Submanifolds X: Differential Geometry In Honor Of Professor S S Chern

Geometry And Topology Of Submanifolds X: Differential Geometry In Honor Of Professor S S Chern

Author: Weihuan Chen

Publisher: World Scientific

Published: 2000-11-07

Total Pages: 361

ISBN-13: 9814492035

DOWNLOAD EBOOK

Contents:Progress in Affine Differential Geometry — Problem List and Continued Bibliography (T Binder & U Simon)On the Classification of Timelike Bonnet Surfaces (W H Chen & H Z Li)Affine Hyperspheres with Constant Affine Sectional Curvature (F Dillen et al.)Geometric Properties of the Curvature Operator (P Gilkey)On a Question of S S Chern Concerning Minimal Hypersurfaces of Spheres (I Hiric( & L Verstraelen)Parallel Pure Spinors on Pseudo-Riemannian Manifolds (I Kath)Twistorial Construction of Spacelike Surfaces in Lorentzian 4-Manifolds (F Leitner)Nirenberg's Problem in 90's (L Ma)A New Proof of the Homogeneity of Isoparametric Hypersurfaces with (g,m) = (6, 1) (R Miyaoka)Harmonic Maps and Negatively Curved Homogeneous Spaces (S Nishikawa)Biharmonic Morphisms Between Riemannian Manifolds (Y L Ou)Intrinsic Properties of Real Hypersurfaces in Complex Space Forms (P J Ryan)On the Nonexistence of Stable Minimal Submanifolds in Positively Pinched Riemannian Manifolds (Y B Shen & H Q Xu)Geodesic Mappings of the Ellipsoid (K Voss)η-Invariants and the Poincaré-Hopf Index Formula (W Zhang)and other papers Readership: Researchers in differential geometry and topology. Keywords:Conference;Proceedings;Berlin (Germany);Beijing (China);Geometry;Topology;Submanifolds X;Differential Geometry;Dedication


Fifth International Congress of Chinese Mathematicians

Fifth International Congress of Chinese Mathematicians

Author: Lizhen Ji

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 520

ISBN-13: 0821875868

DOWNLOAD EBOOK

This two-part volume represents the proceedings of the Fifth International Congress of Chinese Mathematicians, held at Tsinghua University, Beijing, in December 2010. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics. Included are 60 papers based on lectures given at the conference.


Challenges for the 21st Century

Challenges for the 21st Century

Author: Louis H. Y. Chen

Publisher: World Scientific

Published: 2001-05-08

Total Pages: 532

ISBN-13: 9789812811264

DOWNLOAD EBOOK

The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.


Challenges for the Twenty-first Century

Challenges for the Twenty-first Century

Author: Louis Hsiao Yun Chen

Publisher: World Scientific

Published: 2001

Total Pages: 528

ISBN-13: 9810246463

DOWNLOAD EBOOK

The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.