Object Recognition

Object Recognition

Author: M. Bennamoun

Publisher: Springer Science & Business Media

Published: 2001-12-12

Total Pages: 376

ISBN-13: 9781852333980

DOWNLOAD EBOOK

Automatie object recognition is a multidisciplinary research area using con cepts and tools from mathematics, computing, optics, psychology, pattern recognition, artificial intelligence and various other disciplines. The purpose of this research is to provide a set of coherent paradigms and algorithms for the purpose of designing systems that will ultimately emulate the functions performed by the Human Visual System (HVS). Hence, such systems should have the ability to recognise objects in two or three dimensions independently of their positions, orientations or scales in the image. The HVS is employed for tens of thousands of recognition events each day, ranging from navigation (through the recognition of landmarks or signs), right through to communication (through the recognition of characters or people themselves). Hence, the motivations behind the construction of recognition systems, which have the ability to function in the real world, is unquestionable and would serve industrial (e.g. quality control), military (e.g. automatie target recognition) and community needs (e.g. aiding the visually impaired). Scope, Content and Organisation of this Book This book provides a comprehensive, yet readable foundation to the field of object recognition from which research may be initiated or guided. It repre sents the culmination of research topics that I have either covered personally or in conjunction with my PhD students. These areas include image acqui sition, 3-D object reconstruction, object modelling, and the matching of ob jects, all of which are essential in the construction of an object recognition system.


An Introduction to Object Recognition

An Introduction to Object Recognition

Author: Marco Alexander Treiber

Publisher: Springer Science & Business Media

Published: 2010-07-23

Total Pages: 210

ISBN-13: 1849962359

DOWNLOAD EBOOK

Rapid development of computer hardware has enabled usage of automatic object recognition in an increasing number of applications, ranging from industrial image processing to medical applications, as well as tasks triggered by the widespread use of the internet. Each area of application has its specific requirements, and consequently these cannot all be tackled appropriately by a single, general-purpose algorithm. This easy-to-read text/reference provides a comprehensive introduction to the field of object recognition (OR). The book presents an overview of the diverse applications for OR and highlights important algorithm classes, presenting representative example algorithms for each class. The presentation of each algorithm describes the basic algorithm flow in detail, complete with graphical illustrations. Pseudocode implementations are also included for many of the methods, and definitions are supplied for terms which may be unfamiliar to the novice reader. Supporting a clear and intuitive tutorial style, the usage of mathematics is kept to a minimum. Topics and features: presents example algorithms covering global approaches, transformation-search-based methods, geometrical model driven methods, 3D object recognition schemes, flexible contour fitting algorithms, and descriptor-based methods; explores each method in its entirety, rather than focusing on individual steps in isolation, with a detailed description of the flow of each algorithm, including graphical illustrations; explains the important concepts at length in a simple-to-understand style, with a minimum usage of mathematics; discusses a broad spectrum of applications, including some examples from commercial products; contains appendices discussing topics related to OR and widely used in the algorithms, (but not at the core of the methods described in the chapters). Practitioners of industrial image processing will find this simple introduction and overview to OR a valuable reference, as will graduate students in computer vision courses. Marco Treiber is a software developer at Siemens Electronics Assembly Systems, Munich, Germany, where he is Technical Lead in Image Processing for the Vision System of SiPlace placement machines, used in SMT assembly.


Advances in Object Recognition Systems

Advances in Object Recognition Systems

Author: Ioannis Kypraios

Publisher: BoD – Books on Demand

Published: 2012-05-09

Total Pages: 186

ISBN-13: 9535105981

DOWNLOAD EBOOK

An invariant object recognition system needs to be able to recognise the object under any usual a priori defined distortions such as translation, scaling and in-plane and out-of-plane rotation. Ideally, the system should be able to recognise (detect and classify) any complex scene of objects even within background clutter noise. In this book, we present recent advances towards achieving fully-robust object recognition. The relation and importance of object recognition in the cognitive processes of humans and animals is described as well as how human- and animal-like cognitive processes can be used for the design of biologically-inspired object recognition systems. Colour processing is discussed in the development of fully-robust object recognition systems. Examples of two main categories of object recognition systems, the optical correlators and pure artificial neural network architectures, are given. Finally, two examples of object recognition's applications are described in details. With the recent technological advancements object recognition becomes widely popular with existing applications in medicine for the study of human learning and memory, space science and remote sensing for image analysis, mobile computing and augmented reality, semiconductors industry, robotics and autonomous mobile navigation, public safety and urban management solutions and many more others. This book is a "must-read" for everyone with a core or wider interest in this "hot" area of cutting-edge research.


Augmented Vision Perception in Infrared

Augmented Vision Perception in Infrared

Author: Riad I. Hammoud

Publisher: Springer Science & Business Media

Published: 2009-01-01

Total Pages: 476

ISBN-13: 1848002777

DOWNLOAD EBOOK

Throughout much of machine vision’s early years the infrared imagery has suffered from return on investment despite its advantages over visual counterparts. Recently, the ?scal momentum has switched in favor of both manufacturers and practitioners of infrared technology as a result of today’s rising security and safety challenges and advances in thermographic sensors and their continuous drop in costs. This yielded a great impetus in achieving ever better performance in remote surveillance, object recognition, guidance, noncontact medical measurements, and more. The purpose of this book is to draw attention to recent successful efforts made on merging computer vision applications (nonmilitary only) and nonvisual imagery, as well as to ?ll in the need in the literature for an up-to-date convenient reference on machine vision and infrared technologies. Augmented Perception in Infrared provides a comprehensive review of recent deployment of infrared sensors in modern applications of computer vision, along with in-depth description of the world’s best machine vision algorithms and intel- gent analytics. Its topics encompass many disciplines of machine vision, including remote sensing, automatic target detection and recognition, background modeling and image segmentation, object tracking, face and facial expression recognition, - variant shape characterization, disparate sensors fusion, noncontact physiological measurements, night vision, and target classi?cation. Its application scope includes homeland security, public transportation, surveillance, medical, and military. Mo- over, this book emphasizes the merging of the aforementioned machine perception applications and nonvisual imaging in intensi?ed, near infrared, thermal infrared, laser, polarimetric, and hyperspectral bands.


Advanced Topics in Computer Vision

Advanced Topics in Computer Vision

Author: Giovanni Maria Farinella

Publisher: Springer Science & Business Media

Published: 2013-09-24

Total Pages: 437

ISBN-13: 1447155203

DOWNLOAD EBOOK

This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to the co-recognition problem, and distance-based classifiers for large-scale image classification; describes how the four-color theorem can be used for solving MRF problems; introduces a Bayesian generative model for understanding indoor environments, and a boosting approach for generalizing the k-NN rule; discusses the issue of scene-specific object detection, and an approach for making temporal super resolution video.


Advancements in Computer Vision and Image Processing

Advancements in Computer Vision and Image Processing

Author: Garcia-Rodriguez, Jose

Publisher: IGI Global

Published: 2018-04-06

Total Pages: 343

ISBN-13: 152255629X

DOWNLOAD EBOOK

Interest in computer vision and image processing has grown in recent years with the advancement of everyday technologies such as smartphones, computer games, and social robotics. These advancements have allowed for advanced algorithms that have improved the processing capabilities of these technologies. Advancements in Computer Vision and Image Processing is a critical scholarly resource that explores the impact of new technologies on computer vision and image processing methods in everyday life. Featuring coverage on a wide range of topics including 3D visual localization, cellular automata-based structures, and eye and face recognition, this book is geared toward academicians, technology professionals, engineers, students, and researchers seeking current research on the development of sophisticated algorithms to process images and videos in real time.


Deep Learning in Object Recognition, Detection, and Segmentation

Deep Learning in Object Recognition, Detection, and Segmentation

Author: Xiaogang Wang

Publisher: Foundations and Trends (R) in Signal Processing

Published: 2016-07-14

Total Pages: 186

ISBN-13: 9781680831160

DOWNLOAD EBOOK

Deep Learning in Object Recognition, Detection, and Segmentation provides a comprehensive introductory overview of a topic that is having major impact on many areas of research in signal processing, computer vision, and machine learning.


Visual Object Recognition

Visual Object Recognition

Author: Kristen Grauman

Publisher: Morgan & Claypool Publishers

Published: 2011

Total Pages: 184

ISBN-13: 1598299689

DOWNLOAD EBOOK

The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions


Computer Vision and Recognition Systems Using Machine and Deep Learning Approaches

Computer Vision and Recognition Systems Using Machine and Deep Learning Approaches

Author: Chiranji Lal Chowdhary

Publisher: Computing and Networks

Published: 2021-11

Total Pages: 504

ISBN-13: 9781839533235

DOWNLOAD EBOOK

Written by a team of International experts, this edited book covers state-of-the-art research in the fields of computer vision and recognition systems from fundamental concepts to methodologies and technologies and real-world applications. The book will be useful for industry and academic researchers, scientists and engineers.


Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Author: Chi Hau Chen

Publisher: World Scientific

Published: 1999-03-12

Total Pages: 1045

ISBN-13: 9814497649

DOWNLOAD EBOOK

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.