A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions.Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.
Published once a year under the auspices of the Research Center of Mathematical Economics in Tokyo, this series brings together mathematicians interested in economic theories and economists seeking effective mathematical tools to aid their research. Articles set forth original results and detailed overviews of the problems under discussion, offering readers a clear understanding of both economic and mathematical theories.
This textbook presents students with all they need for advancing in mathematical economics. Higher level undergraduates as well as postgraduate students in mathematical economics will find this book extremely useful.
A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.
This book provides a comprehensive introduction to the mathematical foundations of economics, from basic set theory to fixed point theorems and constrained optimization. Rather than simply offer a collection of problem-solving techniques, the book emphasizes the unifying mathematical principles that underlie economics. Features include an extended presentation of separation theorems and their applications, an account of constraint qualification in constrained optimization, and an introduction to monotone comparative statics. These topics are developed by way of more than 800 exercises. The book is designed to be used as a graduate text, a resource for self-study, and a reference for the professional economist.
A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.
A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. The editorial board of this series comprises the following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), T. Maruyama (Keio Univ.). Editors: R. Anderson (U.C. Berkeley), C. Castaing (Univ. Montpellier), F.H. Clarke (Univ. Lyon I), G. Debreu (U.C. Berkeley), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Okayama Univ.), J.-M. Grandmont (CREST-CNRS), N. Hirano (Yokohama National Univ.), L. Hurwicz (Univ. of Minnesota), T. Ichiishi (Ohio State Univ.), A. Ioffe (Israel Institute of Technology), S. Iwamoto (Kyushu Univ.), K. Kamiya (Univ. Tokyo), K. Kawamata (Keio Univ.), N. Kikuchi (Keio Univ.), H. Matano (Univ. Tokyo), K. Nishimura (Kyoto Univ.), M.K. Richter (Univ. Minnesota), Y. Takahashi (Kyoto Univ.), M. Valadier (Univ. Montpellier II), A. Yamaguti (Kyoto Univ./Ryukoku Univ.), M. Yano (Keio Univ.).
This text offers a presentation of the mathematics required to tackle problems in economic analysis. After a review of the fundamentals of sets, numbers, and functions, it covers limits and continuity, the calculus of functions of one variable, linear algebra, multivariate calculus, and dynamics.