This edited book contains extended research papers from AIMTDR 2014. This includes recent research work in the fields of friction stir welding, sheet forming, joining and forming, modeling and simulation, efficient prediction strategies, micro-manufacturing, sustainable and green manufacturing issues etc. This will prove useful to students, researchers and practitioners in the field of materials forming and manufacturing.
This book presents recent material science-based and mechanical analysis-based advances in joining processes. It includes all related processes, e.g. friction stir welding, joining by plastic deformation, laser welding, clinch joining, and adhesive bonding, as well as hybrid joints. It gathers selected full-length papers from the 1st Conference on Advanced Joining Processes.
The main objective of the book is to expose readers to the basics of sustainable material forming and joining technologies, and to discuss the relationship between conventional and sustainable processes. It also provides case studies for sustainable issues in material forming and joining processes, workouts for converting conventional processes to green processes, and highlights the importance of awareness on sustainable and green manufacturing through education. The book will include green and sustainability concepts in material forming like bulk forming and sheet forming emphasizing hot forming, materials development, lubrication, and minimizing defects. Key Features Conceptualizes green and sustainability issues towards efficient material forming and joining Addresses important aspects of sustainable manufacturing by forming operations Presents comparison between traditional and sustainable manufacturing processes Includes practical case studies from industry experts Discusses green and sustainability concepts in material forming like bulk forming and sheet forming emphasizing hot forming, materials development, lubrication, and minimizing defects
This book groups the main advances in material forming, considering different processes, both conventional and non-conventional. It focuses on polymers, composites and metals, which are analyzed from the state of the art. Special emphasis is devoted to the contributions of the European Scientific Association for Material Forming (ESAFORM) during the last decade and in particular the ones coming from its annual international conference.
Joining Processes for Dissimilar and Advanced Materials describes how to overcome the many challenges involved in the joining of similar and dissimilar materials resulting from factors including different thermal coefficients and melting points. Traditional joining processes are ineffective with many newly developed materials. The ever-increasing industrial demands for production efficiency and high-performance materials are also pushing this technology forward. The resulting emergence of advanced micro- and nanoscale material joining technologies, have provided many solutions to these challenges. Drawing on the latest research, this book describes primary and secondary processes for the joining of advanced materials such as metals and alloys, intermetallics, ceramics, glasses, polymers, superalloys, electronic materials and composites in similar and dissimilar combinations. It also covers details of joint design, quality assurance, economics and service life of the product. - Provides valuable information on innovative joining technologies including induction heating of metals, ultrasonic heating, and laser heating at micro- and nanoscale levels - Describes the newly developed modelling, simulation and digitalization of the joining process - Includes a methodology for characterization of joints
The main objective of the book is to expose readers to the basics of sustainable material forming and joining technologies, and to discuss the relationship between conventional and sustainable processes. It also provides case studies for sustainable issues in material forming and joining processes, workouts for converting conventional processes to green processes, and highlights the importance of awareness on sustainable and green manufacturing through education. The book will include green and sustainability concepts in material forming like bulk forming and sheet forming emphasizing hot forming, materials development, lubrication, and minimizing defects. Key Features Conceptualizes green and sustainability issues towards efficient material forming and joining Addresses important aspects of sustainable manufacturing by forming operations Presents comparison between traditional and sustainable manufacturing processes Includes practical case studies from industry experts Discusses green and sustainability concepts in material forming like bulk forming and sheet forming emphasizing hot forming, materials development, lubrication, and minimizing defects
This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.
This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quality or to furnish a protective layer. Accordingly, sections on laser treatment, shot peening and the production of protective layers round out the book’s coverage.
Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, and composites with polymeric, metallic, ceramic, intermetallic and carbon matrices in similar and dissimilar combinations. Suitable for undergraduate and graduate students in engineering in addition to practicing engineers, this book treats in detail mechanical joining with conventional and advanced fasteners or integral design features, adhesive bonding, fusion and non-fusion welding, brazing, soldering, thermal spraying, and synergistic combinations of weld-bonding, weld-brazing, rivet-bonding. In addition, the book addresses materials issues, joint design, production processing, quality assurance, process economics, and joint performance in service.
This book helps the engineer understand the principles of metal forming and analyze forming problems - both the mechanics of forming processes and how the properties of metals interact with the processes. In this fourth edition, an entire chapter has been devoted to forming limit diagrams and various aspects of stamping and another on other sheet forming operations. Sheet testing is covered in a separate chapter. Coverage of sheet metal properties has been expanded. Interesting end-of-chapter notes have been added throughout, as well as references. More than 200 end-of-chapter problems are also included.