This volume covers friction-induced vibration, the influence of actuator-bearing grease composition, wear measurements for proximity recording heads, characteristics of a suspension assembly, design and analysis of the HDD Servo System, reluctance torque reduction, etc. It is organized into three parts: Mechanics and Tribology for Data Storage Systems; Dynamics and Controls for Data Storage Systems; and Electric Motors for Data Storage Systems.
Advances in Information Storage Systems (AISS) series was initiated by ASME Press. New York with a first issue published in April 1991. ASME Press published a total of five volumes in 1991-93. In 1994, World Scientific Publishing Co. Private Limited took over the highly respected series and published volume number 6 in 1995. This volume number 7 is the second volume published by the World Scientific Publishing. The aim of the series remains to report the latest results from around the world in all the electromechanical, materials science, design, and manufacturing problems of information storage systems (magnetic and optical). All articles in each volume are of international archival quality refereed according to rigorous journal standards by the editors and their reviewers. The series will continue to be published with a frequency of one per year.One hundred and fifty five articles have been published in the first six volumes. This volume contains twenty seven articles that cover various aspects of information storage and processing industry organized into three parts: Micromechanical Characterization of Component Materials; Mechanics and Tribology for Data Storage Systems; Dynamics and Controls for Data Storage Systems.
This volume covers friction-induced vibration, the influence of actuator-bearing grease composition, wear measurements for proximity recording heads, characteristics of a suspension assembly, design and analysis of the HDD Servo System, reluctance torque reduction, etc. It is organized into three parts: Mechanics and Tribology for Data Storage Systems; Dynamics and Controls for Data Storage Systems; and Electric Motors for Data Storage Systems.
The series Advances in Information Storage Systems covers a wide range of interdisciplinary technical areas, related to magnetic or optical storage systems. The following nonexhaustive list is indicative of the scope of the topics: Friction, Adhesion, Wear and Lubrications, Coatings, Solid Mechanics, Air Flow, Contamination, Instrumentation, Dynamics, Shock and Vibration, Controls, Head and Suspension Design, Actuators, Spindle and Actuator Motors and Bearings, Structure of Thin Films, Corrosion, Long-Term Reliability, Materials and Processing, Manufacturing and Automation, Economics.This volume contains 30 articles covering various aspects of the information storage and processing industry. It is organized into three parts: Mechanics and Tribology of Magnetic Rigid Disk Drives; Dynamics and Controls of Magnetic Rigid Disk Drives; and Mechanics of Flexible Media Systems.
With the massive amount of data produced and stored each year, reliable storage and retrieval of information is more crucial than ever. Robust coding and decoding techniques are critical for correcting errors and maintaining data integrity. Comprising chapters thoughtfully selected from the highly popular Coding and Signal Processing for Magnetic Recording Systems, Advanced Error Control Techniques for Data Storage Systems is a finely focused reference to the state-of-the-art error control and modulation techniques used in storage devices. The book begins with an introduction to error control codes, explaining the theory and basic concepts underlying the codes. Building on these concepts, the discussion turns to modulation codes, paying special attention to run-length limited sequences, followed by maximum transition run (MTR) and spectrum shaping codes. It examines the relationship between constrained codes and error control and correction systems from both code-design and architectural perspectives as well as techniques based on convolution codes. With a focus on increasing data density, the book also explores multi-track systems, soft decision decoding, and iteratively decodable codes such as Low-Density Parity-Check (LDPC) Codes, Turbo codes, and Turbo Product Codes. Advanced Error Control Techniques for Data Storage Systems offers a comprehensive collection of theory and techniques that is ideal for specialists working in the field of data storage systems.
Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science.
This book describes algorithms and hardware implementations of computer holography, especially in terms of fast calculation. It summarizes the basics of holography and computer holography and describes how conventional diffraction calculations play a central role. Numerical implementations by actual codes will also be discussed. This book will explain new fast diffraction calculations, such as scaled scalar diffraction. Computer Holography will also explain acceleration algorithms for computer-generated hologram (CGH) generation and digital holography with 3D objects composed of point clouds, using look-up table- (LUT) based algorithms, and a wave front recording plane. 3D objects composed of polygons using tilted plane diffraction, expressed by multi-view images and RGB-D images, will be explained in this book. Digital holography, including inline, off-axis, Gabor digital holography, and phase shift digital holography, will also be explored. This book introduces applications of computer holography, including phase retrieval algorithm, holographic memory, holographic projection, and deep learning in computer holography, while explaining hardware implementations for computer holography. Recently, several parallel processors have been released (for example, multi-core CPU, GPU, Xeon Phi, and FPGA). Readers will learn how to apply algorithms to these processors. Features Provides an introduction of the basics of holography and computer holography Summarizes the latest advancements in computer-generated holograms Showcases the latest researchers of digital holography Discusses fast CGH algorithms and diffraction calculations, and their actual codes Includes hardware implementation for computer holography, and its actual codes and quasi-codes
This volume contains three keynote papers and 51 technical papers from contributors around the world on topics in the research and development of database systems, such as Data Modelling, Object-Oriented Databases, Active Databases, Data Mining, Heterogeneous Databases, Distributed Databases, Parallel Query Processing, Multi-Media Databases, Transaction Management Systems, Document Databases, Temporal Databases, Deductive Databases, User Interface, and Advanced Database Applications.