Geometric Analysis

Geometric Analysis

Author: Peter Li

Publisher: Cambridge University Press

Published: 2012-05-03

Total Pages: 417

ISBN-13: 1107020646

DOWNLOAD EBOOK

This graduate-level text demonstrates the basic techniques for researchers interested in the field of geometric analysis.


Handbook of Geometric Analysis

Handbook of Geometric Analysis

Author: Lizhen Ji

Publisher:

Published: 2008

Total Pages: 704

ISBN-13:

DOWNLOAD EBOOK

"Geometric Analysis combines differential equations with differential geometry. An important aspect of geometric analysis is to approach geometric problems by studying differential equations. Besides some known linear differential operators such as the Laplace operator, many differential equations arising from differential geometry are nonlinear. A particularly important example is the Monge-Amperè equation. Applications to geometric problems have also motivated new methods and techniques in differential equations. The field of geometric analysis is broad and has had many striking applications. This handbook of geometric analysis--the first of the two to be published in the ALM series--presents introductions and survey papers treating important topics in geometric analysis, with their applications to related fields. It can be used as a reference by graduate students and by researchers in related areas."--Back cover.


Geometric Analysis and Function Spaces

Geometric Analysis and Function Spaces

Author: Steven George Krantz

Publisher: American Mathematical Soc.

Published: 1993-01-01

Total Pages: 224

ISBN-13: 9780821889251

DOWNLOAD EBOOK

This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.


Vanishing and Finiteness Results in Geometric Analysis

Vanishing and Finiteness Results in Geometric Analysis

Author: Stefano Pigola

Publisher: Springer Science & Business Media

Published: 2008-05-28

Total Pages: 294

ISBN-13: 3764386428

DOWNLOAD EBOOK

This book describes very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods, from spectral theory and qualitative properties of solutions of PDEs, to comparison theorems in Riemannian geometry and potential theory.


Curvature of Space and Time, with an Introduction to Geometric Analysis

Curvature of Space and Time, with an Introduction to Geometric Analysis

Author: Iva Stavrov

Publisher: American Mathematical Soc.

Published: 2020-11-12

Total Pages: 243

ISBN-13: 1470456281

DOWNLOAD EBOOK

This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.


Geometric Analysis

Geometric Analysis

Author: Jingyi Chen

Publisher: Springer Nature

Published: 2020-04-10

Total Pages: 616

ISBN-13: 3030349535

DOWNLOAD EBOOK

This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.


Geometry, Analysis and Probability

Geometry, Analysis and Probability

Author: Jean-Benoît Bost

Publisher: Birkhäuser

Published: 2017-04-26

Total Pages: 363

ISBN-13: 3319496387

DOWNLOAD EBOOK

This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubédat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Müller R. Rhodes D. Rössler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.