Feature Selection for Data and Pattern Recognition

Feature Selection for Data and Pattern Recognition

Author: Urszula Stańczyk

Publisher: Springer

Published: 2016-09-24

Total Pages: 0

ISBN-13: 9783662508459

DOWNLOAD EBOOK

This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.


Advances in Feature Selection for Data and Pattern Recognition

Advances in Feature Selection for Data and Pattern Recognition

Author: Urszula Stańczyk

Publisher: Springer

Published: 2017-11-16

Total Pages: 334

ISBN-13: 3319675885

DOWNLOAD EBOOK

This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved. Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.


Feature Selection for Knowledge Discovery and Data Mining

Feature Selection for Knowledge Discovery and Data Mining

Author: Huan Liu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 225

ISBN-13: 1461556899

DOWNLOAD EBOOK

As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.


Computational Intelligence and Healthcare Informatics

Computational Intelligence and Healthcare Informatics

Author: Om Prakash Jena

Publisher: John Wiley & Sons

Published: 2021-10-19

Total Pages: 434

ISBN-13: 1119818680

DOWNLOAD EBOOK

COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.


Spectral Feature Selection for Data Mining

Spectral Feature Selection for Data Mining

Author: Zheng Alan Zhao

Publisher: CRC Press

Published: 2011-12-14

Total Pages: 220

ISBN-13: 1439862109

DOWNLOAD EBOOK

Spectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervise


Advances In Pattern Recognition And Artificial Intelligence

Advances In Pattern Recognition And Artificial Intelligence

Author: Marleah Blom

Publisher: World Scientific

Published: 2021-11-16

Total Pages: 277

ISBN-13: 9811239029

DOWNLOAD EBOOK

This book includes reviewed papers by international scholars from the 2020 International Conference on Pattern Recognition and Artificial Intelligence (held online). The papers have been expanded to provide more details specifically for the book. It is geared to promote ongoing interest and understanding about pattern recognition and artificial intelligence. Like the previous book in the series, this book covers a range of topics and illustrates potential areas where pattern recognition and artificial intelligence can be applied. It highlights, for example, how pattern recognition and artificial intelligence can be used to classify, predict, detect and help promote further discoveries related to credit scores, criminal news, national elections, license plates, gender, personality characteristics, health, and more.Chapters include works centred on medical and financial applications as well as topics related to handwriting analysis and text processing, internet security, image analysis, database creation, neural networks and deep learning. While the book is geared to promote interest from the general public, it may also be of interest to graduate students and researchers in the field.


Feature Extraction, Construction and Selection

Feature Extraction, Construction and Selection

Author: Huan Liu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 418

ISBN-13: 1461557259

DOWNLOAD EBOOK

There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.


Advances in Security of Information and Communication Networks

Advances in Security of Information and Communication Networks

Author: Ali Ismail Awad

Publisher: Springer

Published: 2013-08-15

Total Pages: 260

ISBN-13: 3642405975

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the International Conference on Advances in Security of Information and Communication Networks, Sec Net 2013, held in Cairo, Egypt, in September 2013. The 21 revised full papers presented were carefully reviewed and selected from 62 submissions. The papers are organized in topical sections on networking security; data and information security; authentication and privacy; security applications.


Statistical Pattern Recognition

Statistical Pattern Recognition

Author: Andrew R. Webb

Publisher: John Wiley & Sons

Published: 2003-07-25

Total Pages: 516

ISBN-13: 0470854782

DOWNLOAD EBOOK

Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a


Pattern Classification

Pattern Classification

Author: Shigeo Abe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 332

ISBN-13: 1447102851

DOWNLOAD EBOOK

This book provides a unified approach for developing a fuzzy classifier and explains the advantages and disadvantages of different classifiers through extensive performance evaluation of real data sets. It thus offers new learning paradigms for analyzing neural networks and fuzzy systems, while training fuzzy classifiers. Function approximation is also treated and function approximators are compared.