Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining

Author: Usama M. Fayyad

Publisher:

Published: 1996

Total Pages: 638

ISBN-13:

DOWNLOAD EBOOK

Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.


Advances in Machine Learning and Data Mining for Astronomy

Advances in Machine Learning and Data Mining for Astronomy

Author: Michael J. Way

Publisher: CRC Press

Published: 2012-03-29

Total Pages: 744

ISBN-13: 1439841748

DOWNLOAD EBOOK

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines


Advances in Data Mining Knowledge Discovery and Applications

Advances in Data Mining Knowledge Discovery and Applications

Author: Adem Karahoca

Publisher: BoD – Books on Demand

Published: 2012-09-12

Total Pages: 404

ISBN-13: 9535107488

DOWNLOAD EBOOK

Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications.


Data Mining and Knowledge Discovery in Real Life Applications

Data Mining and Knowledge Discovery in Real Life Applications

Author: Julio Ponce

Publisher: BoD – Books on Demand

Published: 2009-01-01

Total Pages: 404

ISBN-13: 390261353X

DOWNLOAD EBOOK

This book presents four different ways of theoretical and practical advances and applications of data mining in different promising areas like Industrialist, Biological, and Social. Twenty six chapters cover different special topics with proposed novel ideas. Each chapter gives an overview of the subjects and some of the chapters have cases with offered data mining solutions. We hope that this book will be a useful aid in showing a right way for the students, researchers and practitioners in their studies.


Trends and Applications in Knowledge Discovery and Data Mining

Trends and Applications in Knowledge Discovery and Data Mining

Author: Manish Gupta

Publisher: Springer Nature

Published: 2021-05-03

Total Pages: 181

ISBN-13: 3030750159

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of five workshops that were held in conjunction with the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2021, in Delhi, India, in May 2021. The 17 revised full papers presented were carefully reviewed and selected from a total of 39 submissions.. The five workshops were as follows: Workshop on Smart and Precise Agriculture (WSPA 2021) PAKDD 2021 Workshop on Machine Learning for Measurement Informatics (MLMEIN 2021) The First Workshop and Shared Task on Scope Detection of the Peer Review Articles (SDPRA 2021) The First International Workshop on Data Assessment and Readiness for AI (DARAI 2021) The First International Workshop on Artificial Intelligence for Enterprise Process Transformation (AI4EPT 2021)


Temporal Data Mining

Temporal Data Mining

Author: Theophano Mitsa

Publisher: CRC Press

Published: 2010-03-10

Total Pages: 398

ISBN-13: 1420089773

DOWNLOAD EBOOK

From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.


Optimization Based Data Mining: Theory and Applications

Optimization Based Data Mining: Theory and Applications

Author: Yong Shi

Publisher: Springer Science & Business Media

Published: 2011-05-16

Total Pages: 314

ISBN-13: 0857295047

DOWNLOAD EBOOK

Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.


Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining

Author: Jinho Kim

Publisher: Springer

Published: 2017-04-25

Total Pages: 866

ISBN-13: 331957454X

DOWNLOAD EBOOK

This two-volume set, LNAI 10234 and 10235, constitutes the thoroughly refereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining and security/risk applications; spatio-temporal and sequential data mining; clustering and anomaly detection; recommender system; feature selection; text and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction.


Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining

Author: Zhi-Hua Zhou

Publisher: Springer

Published: 2007-06-21

Total Pages: 1184

ISBN-13: 3540717013

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2007, held in Nanjing, China, May 2007. It covers new ideas, original research results and practical development experiences from all KDD-related areas including data mining, machine learning, data warehousing, data visualization, automatic scientific discovery, knowledge acquisition and knowledge-based systems.