Advances in Artificial Intelligence: From Theory to Practice

Advances in Artificial Intelligence: From Theory to Practice

Author: Salem Benferhat

Publisher: Springer

Published: 2017-06-10

Total Pages: 485

ISBN-13: 3319600451

DOWNLOAD EBOOK

The two-volume set LNCS 10350 and 10351 constitutes the thoroughly refereed proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, held in Arras, France, in June 2017. The 70 revised full papers presented together with 45 short papers and 3 invited talks were carefully reviewed and selected from 180 submissions. They are organized in topical sections: constraints, planning, and optimization; data mining and machine learning; sensors, signal processing, and data fusion; recommender systems; decision support systems; knowledge representation and reasoning; navigation, control, and autonome agents; sentiment analysis and social media; games, computer vision; and animation; uncertainty management; graphical models: from theory to applications; anomaly detection; agronomy and artificial intelligence; applications of argumentation; intelligent systems in healthcare and mhealth for health outcomes; and innovative applications of textual analysis based on AI.


Machine Learning in Finance

Machine Learning in Finance

Author: Matthew F. Dixon

Publisher: Springer Nature

Published: 2020-07-01

Total Pages: 565

ISBN-13: 3030410684

DOWNLOAD EBOOK

This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.


Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications

Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications

Author: Aboul Ella Hassanien

Publisher: Springer Nature

Published: 2020-08-31

Total Pages: 310

ISBN-13: 3030519201

DOWNLOAD EBOOK

This book highlights the latest advances in the field of artificial intelligence and related technologies, with a special focus on sustainable development and environmentally friendly artificial intelligence applications. Discussing theory, applications and research, it covers all aspects of artificial intelligence in the context of sustainable development.


Communicating Artificial Intelligence (AI)

Communicating Artificial Intelligence (AI)

Author: Seungahn Nah

Publisher: Routledge

Published: 2020-12-18

Total Pages: 162

ISBN-13: 1000326306

DOWNLOAD EBOOK

Despite increasing scholarly attention to artificial intelligence (AI), studies at the intersection of AI and communication remain ripe for exploration, including investigations of the social, political, cultural, and ethical aspects of machine intelligence, interactions among agents, and social artifacts. This book tackles these unexplored research areas with special emphasis on conditions, components, and consequences of cognitive, attitudinal, affective, and behavioural dimensions toward communication and AI. In doing so, this book epitomizes communication, journalism and media scholarship on AI and its social, political, cultural, and ethical perspectives. Topics vary widely from interactions between humans and robots through news representation of AI and AI-based news credibility to privacy and value toward AI in the public sphere. Contributors from such countries as Brazil, Netherland, South Korea, Spain, and United States discuss important issues and challenges in AI and communication studies. The collection of chapters in the book considers implications for not only theoretical and methodological approaches, but policymakers and practitioners alike. The chapters in this book were originally published as a special issue of Communication Studies.


Artificial Intelligence in Behavioral and Mental Health Care

Artificial Intelligence in Behavioral and Mental Health Care

Author: David D. Luxton

Publisher: Academic Press

Published: 2015-09-10

Total Pages: 309

ISBN-13: 0128007923

DOWNLOAD EBOOK

Artificial Intelligence in Behavioral and Mental Health Care summarizes recent advances in artificial intelligence as it applies to mental health clinical practice. Each chapter provides a technical description of the advance, review of application in clinical practice, and empirical data on clinical efficacy. In addition, each chapter includes a discussion of practical issues in clinical settings, ethical considerations, and limitations of use. The book encompasses AI based advances in decision-making, in assessment and treatment, in providing education to clients, robot assisted task completion, and the use of AI for research and data gathering. This book will be of use to mental health practitioners interested in learning about, or incorporating AI advances into their practice and for researchers interested in a comprehensive review of these advances in one source. - Summarizes AI advances for use in mental health practice - Includes advances in AI based decision-making and consultation - Describes AI applications for assessment and treatment - Details AI advances in robots for clinical settings - Provides empirical data on clinical efficacy - Explores practical issues of use in clinical settings


Artificial Intelligence

Artificial Intelligence

Author: David L. Poole

Publisher: Cambridge University Press

Published: 2017-09-25

Total Pages: 821

ISBN-13: 110719539X

DOWNLOAD EBOOK

Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.


Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence

Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence

Author: Hamido Fujita

Publisher: Springer Nature

Published: 2022-08-29

Total Pages: 932

ISBN-13: 3031085302

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed proceedings of the 35th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2022, held in Kitakyushu, Japan, in July 2022. The 67 full papers and 11 short papers presented were carefully reviewed and selected from 127 submissions. The IEA/AIE 2022 conference focuses on focuses on applications of applied intelligent systems to solve real-life problems in all areas including business and finance, science, engineering, industry, cyberspace, bioinformatics, automation, robotics, medicine and biomedicine, and human-machine interactions.


Advances in Financial Machine Learning

Advances in Financial Machine Learning

Author: Marcos Lopez de Prado

Publisher: John Wiley & Sons

Published: 2018-01-23

Total Pages: 395

ISBN-13: 1119482119

DOWNLOAD EBOOK

Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.


Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition

Author: Mehryar Mohri

Publisher: MIT Press

Published: 2018-12-25

Total Pages: 505

ISBN-13: 0262351366

DOWNLOAD EBOOK

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.


Understanding Machine Learning

Understanding Machine Learning

Author: Shai Shalev-Shwartz

Publisher: Cambridge University Press

Published: 2014-05-19

Total Pages: 415

ISBN-13: 1107057132

DOWNLOAD EBOOK

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.