Advances in Algebraic Quantum Field Theory

Advances in Algebraic Quantum Field Theory

Author: Romeo Brunetti

Publisher: Springer

Published: 2015-09-04

Total Pages: 460

ISBN-13: 3319213539

DOWNLOAD EBOOK

This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.


Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes

Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes

Author: Thomas-Paul Hack

Publisher: Springer

Published: 2015-08-17

Total Pages: 129

ISBN-13: 3319218948

DOWNLOAD EBOOK

This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.>


Introduction to Algebraic Quantum Field Theory

Introduction to Algebraic Quantum Field Theory

Author: S.S. Horuzhy

Publisher: Springer Science & Business Media

Published: 1990-06-30

Total Pages: 326

ISBN-13: 9789027727220

DOWNLOAD EBOOK

'Et moi, ... , si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' Jules Verne where it belongs, on the topmost shel.f next to the dusty canister labelled 'discarded non­ The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.


Computer Algebra in Quantum Field Theory

Computer Algebra in Quantum Field Theory

Author: Carsten Schneider

Publisher: Springer Science & Business Media

Published: 2013-10-05

Total Pages: 422

ISBN-13: 3709116163

DOWNLOAD EBOOK

The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.


Progress and Visions in Quantum Theory in View of Gravity

Progress and Visions in Quantum Theory in View of Gravity

Author: Felix Finster

Publisher: Springer Nature

Published: 2020-04-09

Total Pages: 302

ISBN-13: 3030389413

DOWNLOAD EBOOK

This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference “Progress and Visions in Quantum Theory in View of Gravity” which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.


Perturbative Algebraic Quantum Field Theory

Perturbative Algebraic Quantum Field Theory

Author: Kasia Rejzner

Publisher: Springer

Published: 2016-03-16

Total Pages: 186

ISBN-13: 3319259016

DOWNLOAD EBOOK

Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.


Algebraic Methods in Statistical Mechanics and Quantum Field Theory

Algebraic Methods in Statistical Mechanics and Quantum Field Theory

Author: Dr. Gérard G. Emch

Publisher: Courier Corporation

Published: 2014-08-04

Total Pages: 336

ISBN-13: 0486151719

DOWNLOAD EBOOK

This systematic algebraic approach offers a careful formulation of the problems' physical motivations as well as self-contained descriptions of the mathematical methods for arriving at solutions. 1972 edition.


Advances in Algebraic Quantum Field Theory

Advances in Algebraic Quantum Field Theory

Author: Romeo Brunetti

Publisher:

Published: 2015

Total Pages:

ISBN-13: 9783319213545

DOWNLOAD EBOOK

This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.


Mathematical Theory of Quantum Fields

Mathematical Theory of Quantum Fields

Author: Huzihiro Araki

Publisher: Oxford University Press

Published: 1999-10-22

Total Pages: 254

ISBN-13: 0192539116

DOWNLOAD EBOOK

This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.


Mathematical Aspects of Quantum Field Theories

Mathematical Aspects of Quantum Field Theories

Author: Damien Calaque

Publisher: Springer

Published: 2015-01-06

Total Pages: 572

ISBN-13: 3319099493

DOWNLOAD EBOOK

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.