Advanced Test Reactor Probabilistic Risk Assessment

Advanced Test Reactor Probabilistic Risk Assessment

Author:

Publisher:

Published: 1993

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK

This report discusses Level 1 probabilistic risk assessment (PRA) incorporating a full-scope external events analysis which has been completed for the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory.


Advanced Test Reactor Probabilistic Risk Assessment Methodology and Results Summary

Advanced Test Reactor Probabilistic Risk Assessment Methodology and Results Summary

Author:

Publisher:

Published: 1992

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs.


Communication of Advanced Test Reactor Probabilistic Risk Assessment Results

Communication of Advanced Test Reactor Probabilistic Risk Assessment Results

Author:

Publisher:

Published: 1992

Total Pages: 4

ISBN-13:

DOWNLOAD EBOOK

The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 results were efficiently communicated in two reports following the completion of revision 1 of the ATR PRA. As the ATR PRA including external events fills four large volume, it was considered impractical to expect all of the individuals at ATR who could benefit from the information to read the entire PRA. Even though many ATR personnel received training in PRA methodology and were involved in some aspects of the PRA, another hinderance to effective communication of the PRA results is that the PRA was written and organized to meet the requirements of practitioners and reviewers who are well-versed in PRA methods. Therefore, two PRA summary reports, an ATR risk summary report and an ATR functional group summary report, were written to communicate the ATR PRA results and insights to interested ATR personnel.


Advanced Test Reactor Outage Risk Assessment

Advanced Test Reactor Outage Risk Assessment

Author:

Publisher:

Published: 1997

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK

Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are conducted and post-outage risk assessment is documented to summarize the positive and negative aspects of the outage with regard to risk. The risk for the outage is compared to the risk level that would result from optimal scheduling of the work to be performed and to baseline or average past performance.


Review and Updates of the Risk Assessment for Advanced Test Reactor Operations for Operating Events and Experience

Review and Updates of the Risk Assessment for Advanced Test Reactor Operations for Operating Events and Experience

Author:

Publisher:

Published: 1996

Total Pages: 9

ISBN-13:

DOWNLOAD EBOOK

Annual or biannual reviews of the operating history of the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) have been conducted for the purpose of reviewing and updating the ATR probabilistic safety assessment (PSA) for operating events and operating experience since the first compilation of plant- specific experience data for the ATR PSA which included data for operation from initial power operation in 1969 through 1988. This technical paper briefly discusses the means and some results of these periodic reviews of operating experience and their influence on the ATR PSA.


Advanced Concepts In Nuclear Energy Risk Assessment And Management

Advanced Concepts In Nuclear Energy Risk Assessment And Management

Author: Tunc Aldemir

Publisher: World Scientific

Published: 2018-04-25

Total Pages: 554

ISBN-13: 9813225629

DOWNLOAD EBOOK

Over the past 30 years, numerous concerns have been raised in the literature regarding the capability of static modeling approaches such as the event-tree (ET)/fault-tree (FT) methodology to adequately account for the impact of process/hardware/software/firmware/human interactions on nuclear power plant safety assessment, and methodologies to augment the ET/FT approach have been proposed. Often referred to as dynamic probabilistic risk/safety assessment (DPRA/DPSA) methodologies, which use a time-dependent phenomenological model of system evolution along with a model of its stochastic behavior to model for possible dependencies among failure events. The book contains a collection of papers that describe at existing plant level applicable DPRA/DPSA tools, as well as techniques that can be used to augment the ET/FT approach when needed.


Safety Significance of ATR (Advanced Test Reactor) Passive Safety Response Attributes

Safety Significance of ATR (Advanced Test Reactor) Passive Safety Response Attributes

Author:

Publisher:

Published: 1989

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety posture of the facility. The three passive safety attributes being evaluated in the paper are: (1) In-core and in-vessel natural convection cooling, (2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and (3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond for most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) model ands results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR Level 1 PRA because of the diversity and redundancy of the ATR firewater injection system (emergency coolant system). 8 refs., 4 figs., 1 tab.


Seismically Induced Relay Chatter Risk Analysis for the Advanced Test Reactor

Seismically Induced Relay Chatter Risk Analysis for the Advanced Test Reactor

Author:

Publisher:

Published: 1992

Total Pages: 4

ISBN-13:

DOWNLOAD EBOOK

A seismic probabilistic risk assessment (PRA) was performed as part of the Level I PRA for the Department of Energy (DOE) Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). This seismic PRA included a comprehensive and efficient seismically-induced relay chatter risk analysis. The key elements to this comprehensive and efficient seismically-induced relay chatter analysis included (1) screening procedures to identify the critical relays to be evaluated, (2) streamlined seismic fragility evaluation, and (3) comprehensive seismic risk evaluation using detailed event trees and fault trees. These key elements were performed to provide a core fuel damage frequency evaluation due to seismically induced relay chatter. A sensitivity analysis was performed to evaluate the impact of including seismically-induced relay chatter events in the seismic PRA. The systems analysis was performed by EG & G Idaho, Inc. and the fragilities for the relays were developed by EQE Engineering Consultants.


Probabilistic Risk Assessment in the Nuclear Power Industry

Probabilistic Risk Assessment in the Nuclear Power Industry

Author: R. R. Fullwood

Publisher: Pergamon

Published: 1988

Total Pages: 354

ISBN-13:

DOWNLOAD EBOOK

This book describes a number of the more important improvements in risk assessment methodology in the nuclear industry, developed over the last decade. It presents them in an instructive way so as to be suitable for those wishing to understand the techniques. The methodology of modern probabilistic risk assessment (PRA) is discussed in detail. This book is divided into six parts. Part I, Protecting the Public Health and Safety provides an overview of risk analysis including results presentation, safety goals, emergency planning, and public perception. Part II, the Mathematics, which is necessary to understand the text. Part III, safety Aspects of Light Water Reactors describes the types of plants and goes on to discuss accident initiator selection and frequencies. Part IV, PRA, describes system modelling, human factors analysis, data bases, codes, system interactions, external events, core melt physics, and the transport of radionuclides to the public. Part V discusses 34 types of applications of PRA. Part VI, Resources, provides a glossary, references, and an index. Problems are provided at the end of each part to both stimulate understanding and introduce additional material. This book would be a very valuable addition to the reference library of practitioners in the risk assessment business. It is also a useful instructional text for graduate and undergraduate nuclear engineering students as well as newcomers to the field.