Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

Author: Tony Ho

Publisher:

Published: 2012

Total Pages: 294

ISBN-13:

DOWNLOAD EBOOK

The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable energy and waste heat recovery systems. A brief review of current advanced vapor power cycles including the Organic Rankine Cycle (ORC), the zeotropic Rankine cycle, the Kalina cycle, the transcritical cycle, and the trilateral flash cycle is presented. The premise and motivation for the OFC concept is that essentially by improving temperature matching to the energy reservoir stream during heat addition to the power cycle, less irreversibilities are generated and more power can be produced from a given finite thermal energy reservoir. In this study, modern equations of state explicit in Helmholtz energy such as the BACKONE equations, multi-parameter Span-Wagner equations, and the equations compiled in NIST REFPROP 8.0 were used to accurately determine thermodynamic property data for the working fluids considered. Though these equations of state tend to be significantly more complex than cubic equations both in form and computational schemes, modern Helmholtz equations provide much higher accuracy in the high pressure regions, liquid regions, and two-phase regions and also can be extended to accurately describe complex polar fluids. Calculated values of saturated liquid and vapor density and vapor pressure were then compared to values listed in the NIST Chemistry WebBook to ensure accuracy for the temperature range of interest. Deviations from the NIST WebBook were typically below 1%; a comparison of first law efficiencies for an ideal basic Rankine cycle yielded less than 0.4% difference between calculations using the Helmholtz-explicit equations of state and NIST REFPROP. Also by employing the BACKONE and Span-Wagner equations, the number of potential aromatic hydrocarbon and siloxane working fluids that are appropriate for high and intermediate temperature applications is expanded considerably. A theoretical investigation on the OFC is conducted using the aforementioned Helmholtz-explicit equations of state for 10 different aromatic hydrocarbon and siloxane working fluids for intermediate temperature finite thermal energy reservoirs (3̃00oC). Results showed that aromatic hydrocarbons to be the better suited working fluid for the ORC and OFC due to less "drying" behavior and also smaller turbine volumetric flow ratios resulting in simpler turbine designs. The single flash OFC is shown to achieve utilization efficiencies that are comparable to the optimized basic ORC (0̃.63) which is used as a baseline. It is shown that the advantage of improved temperature matching during heat addition was effectively negated by irreversibilities introduced into the OFC during flash evaporation. Several improvements to the basic OFC are proposed and analyzed such as introducing a secondary flash stage or replacing the throttling valve with a two-phase expander. Utilization efficiency gains of about 10% over the optimized basic ORC can be achieved by splitting the expansion process in the OFC into two steps and recombining the liquid stream from flash evaporation prior to the secondary, low pressure, expansion stage. Results show that the proposed enhancements had a more pronounced effect for the OFC using aromatic hydrocarbon working fluids (5-20% utilization efficiency improvement) than for siloxane working fluids (2-4%). The proposed modifications were aimed towards reducing irreversibility in flash evaporation; it was observed for siloxanes that the primary source of irreversibility was due to high superheat at the turbine exhaust because of the highly "drying" nature of the fluid. Though an order of magnitude analysis, results showed that the OFC and ORC to require similar heat transfer surface areas. For low temperature thermal energy reservoirs (80-150oC) applicable to non-concentrated solar thermal, geothermal, and low grade industrial waste heat energy, alkane and refrigerant working fluids possess more appropriate vapor pressures. The optimized single flash OFC was again shown to generate comparable power per unit flow rate of the thermal energy reservoir than the optimized basic ORC. With some of the previously proposed design modifications though, the OFC can produce over 60% more power than the optimized ORC. For low temperature applications, the minimum temperature difference between streams in the heat exchanger, or pinch temperature, becomes an important design parameter. Reduction of the pinch temperature even slightly can yield significantly higher gains in power output, but will also increase required heat exchanger surface area and subsequently capital costs. A high-level design of a liquid-fluoride salt (NaF-NaBF4) cooled solar power tower plant is presented; liquid-fluoride salt is used rather than current molten nitrate salts to increase the receiver temperature and subsequently allow for higher efficiency gas power cycles to be used. Graphite or direct energy storage in the salt itself is proposed. The power block component of this heliostat-central receiver plant is a combined cycle system consisting of a topping Brayton cycle with intercooling, reheat, and regeneration and a bottoming low-temperature modified OFC. The combined cycle is designed with dry cooling in mind, such that operation in desert climates are more suitable. The combined cycle design is shown to increase power block efficiencies by 6%-8% over the Brayton cycle with intercooling, reheat, and regeneration alone. An estimated 30% annual average total solar-to-electric conversion efficiency is possible with this system design, which is comparable to some of the most efficient high temperature solar power tower designs to date. Theoretically, power block efficiencies over 60% are possible; however, emission losses from the isothermal central receiver would limit the plant's operational temperature range. Results show that for high efficiency solar power towers to be realized, high temperature non-isothermal, or partitioned, receivers operating efficiently above 1000oC are necessary. Other potential areas of renewable energy system integration for the OFC include a co-generation solar thermal-photovoltaic system that employs highly concentrated, densely packed photovoltaic cells using single-phase or two-phase cooling. The thermal energy absorbed by that coolant could then be used as the working fluid in a separate OFC to further produce power in co-generation with the concentrated photovoltaics.


Organic Rankine Cycle (ORC) Power Systems

Organic Rankine Cycle (ORC) Power Systems

Author: Ennio Macchi

Publisher: Woodhead Publishing

Published: 2016-08-24

Total Pages: 700

ISBN-13: 0081005113

DOWNLOAD EBOOK

Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. Provides a thorough introduction to ORC power systems Contains detailed chapters on ORC plant components Includes a section focusing on ORC design and optimization Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes Various chapters are authored by well-known specialists from Academia and ORC manufacturers


Advanced Power Generation Systems

Advanced Power Generation Systems

Author: Yatish T. Shah

Publisher: CRC Press

Published: 2022-12-21

Total Pages: 457

ISBN-13: 1000798895

DOWNLOAD EBOOK

Advanced Power Generation Systems: Thermal Sources evaluates advances made in heat-to-power technologies for conventional combustion heat and nuclear heat, along with natural sources of geothermal, solar, and waste heat generated from the use of different sources. These advances will render the landscape of power generation significantly different in just a few decades. This book covers the commercial viability of advanced technologies and identifies where more work needs to be done. Since power is the future of energy, these technologies will remain sustainable over a long period of time. Key Features Covers power generation and heat engines Details photovoltaics, thermo-photovoltaics, and thermoelectricity Includes discussion of nuclear and renewable energy as well as waste heat This book will be useful for advanced students, researchers, and professionals interested in power generation and energy industries.


Encyclopedia of Renewable Energy, Sustainability and the Environment

Encyclopedia of Renewable Energy, Sustainability and the Environment

Author:

Publisher: Elsevier

Published: 2024-10-01

Total Pages: 4061

ISBN-13: 0323939414

DOWNLOAD EBOOK

Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource. Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. Covers all renewable energy technologies in one comprehensive resource“/li> Details renewable energies’ processes, from production to utilization in a single encyclopedia Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field Assesses economic challenges faced to implement each type of renewable energy Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy


Advanced Power Generation Systems

Advanced Power Generation Systems

Author: Ibrahim Dincer

Publisher: Academic Press

Published: 2014-07-15

Total Pages: 657

ISBN-13: 0123838614

DOWNLOAD EBOOK

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice


Comprehensive Energy Systems

Comprehensive Energy Systems

Author: Ibrahim Dincer

Publisher: Elsevier

Published: 2018-02-07

Total Pages: 5543

ISBN-13: 0128149256

DOWNLOAD EBOOK

Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language


Organic Rankine Cycle for Energy Recovery System

Organic Rankine Cycle for Energy Recovery System

Author: Andrea De Pascale

Publisher: MDPI

Published: 2020-06-18

Total Pages: 192

ISBN-13: 3039363948

DOWNLOAD EBOOK

The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book.


Thermodynamic Analysis and Optimization of Geothermal Power Plants

Thermodynamic Analysis and Optimization of Geothermal Power Plants

Author: Can Ozgur Colpan

Publisher: Elsevier

Published: 2021-02-19

Total Pages: 346

ISBN-13: 0128231904

DOWNLOAD EBOOK

Thermodynamic Analysis and Optimization of Geothermal Power Plants guides researchers and engineers on the analysis and optimization of geothermal power plants through conventional and innovative methods. Coverage encompasses the fundamentals, thermodynamic analysis, and optimization of geothermal power plants. Advanced thermodynamic analysis tools such as exergy analysis, thermoeconomic analysis, and several thermodynamic optimization methods are covered in depth for different configurations of geothermal power plants through case studies. Interdisciplinary research with relevant economic and environmental dimensions are addressed in many of the studies. Multiobjective optimization studies aimed at better efficiency, lower cost, and a lower environmental impact are also discussed in this book. Addresses the complexities of thermodynamic assessment in almost all operational plant configurations, including solar-geothermal and multigeneration power plants Includes an exemplary range of case studies, from basic to integrated Provides modern optimization methods including exergoeconomic, artificial neural networks, and multiobjective particle swarm Covers environmental impact considerations and integration with renewable energy systems


Design of Organic Rankine Cycles for Conversion of Waste Heat in a Polygeneration Plant

Design of Organic Rankine Cycles for Conversion of Waste Heat in a Polygeneration Plant

Author: Kevin J. DiGenova

Publisher:

Published: 2011

Total Pages: 134

ISBN-13:

DOWNLOAD EBOOK

Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic Rankine cycles for use in a polygeneration plant that converts coal feedstock into hydrocarbon products and electricity. Since a Fischer Tropsch reactor is the largest source of low grade heat in the polygeneration plant, rejecting heat at a constant temperature of 240°C, the analysis in this work focuses on utilizing the waste heat from this process. Organic Rankine cycles (ORC's) are modeled in MATLAB using pure substance data available from Refprop 8.0. Various working fluids are considered, with a particular focus on hexane, heptane, octane, nonane, and decane. Hexane is the best option for the Fischer Tropsch heat source and the working fluids considered here. A set of ORC design concepts (building blocks) is developed to allow a cycle to be matched to a generic heat source, and is demonstrated using the Fischer Tropsch heat source profile. The low pressure steam Rankine cycle achieves a 20.6% conversion, while a baseline hexane organic Rankine cycle achieves a 26.2% conversion efficiency for the same Fischer Tropsch heat source. If the ORC building blocks are combined into a cycle targeted to match the temperature-enthalpy profile of the heat source, this customized hexane cycle achieves 28.5% conversion efficiency. For a polygeneration plant with a 25,000 ton per day input of coal, the conversion efficiency is improved by 0.3 to 0.5 points. Moreover, by combining the ORC building blocks identified in this work into new configurations, cycle designers can create customized organic Rankine cycles that target any heat source temperature-enthalpy profile to achieve improved conversion efficiencies.