Advanced Mean Field Methods

Advanced Mean Field Methods

Author: Manfred Opper

Publisher: MIT Press

Published: 2001

Total Pages: 300

ISBN-13: 9780262150545

DOWNLOAD EBOOK

This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.


Phase-Field Methods in Materials Science and Engineering

Phase-Field Methods in Materials Science and Engineering

Author: Nikolas Provatas

Publisher: John Wiley & Sons

Published: 2011-07-26

Total Pages: 323

ISBN-13: 3527632379

DOWNLOAD EBOOK

This comprehensive and self-contained, one-stop source discusses phase-field methodology in a fundamental way, explaining advanced numerical techniques for solving phase-field and related continuum-field models. It also presents numerical techniques used to simulate various phenomena in a detailed, step-by-step way, such that readers can carry out their own code developments. Features many examples of how the methods explained can be used in materials science and engineering applications.


Sublinear Computation Paradigm

Sublinear Computation Paradigm

Author: Naoki Katoh

Publisher: Springer Nature

Published: 2021-10-19

Total Pages: 403

ISBN-13: 9811640955

DOWNLOAD EBOOK

This open access book gives an overview of cutting-edge work on a new paradigm called the “sublinear computation paradigm,” which was proposed in the large multiyear academic research project “Foundations of Innovative Algorithms for Big Data.” That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as “fast,” but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required. The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techniques for big data. The project is organized into three teams that focus on sublinear algorithms, sublinear data structures, and sublinear modelling. The work has provided high-level academic research results of strong computational and algorithmic interest, which are presented in this book. The book consists of five parts: Part I, which consists of a single chapter on the concept of the sublinear computation paradigm; Parts II, III, and IV review results on sublinear algorithms, sublinear data structures, and sublinear modelling, respectively; Part V presents application results. The information presented here will inspire the researchers who work in the field of modern algorithms.


The Variational Bayes Method in Signal Processing

The Variational Bayes Method in Signal Processing

Author: Václav Šmídl

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 241

ISBN-13: 3540288201

DOWNLOAD EBOOK

Treating VB approximation in signal processing, this monograph is for academic and industrial research groups in signal processing, data analysis, machine learning and identification. It reviews distributional approximation, showing that tractable algorithms for parametric model identification can be generated in off-line and on-line contexts.


Mean Field Theory

Mean Field Theory

Author: Vladimir M Kolomietz

Publisher: World Scientific

Published: 2020-05-08

Total Pages: 586

ISBN-13: 9811211795

DOWNLOAD EBOOK

This book describes recent theoretical and experimental developments in the study of static and dynamic properties of atomic nuclei, many-body systems of strongly interacting neutrons and protons. The theoretical approach is based on the concept of the mean field, describing the motion of a nucleon in terms of a self-consistent single-particle potential well which approximates the interactions of a nucleon with all the other nucleons. The theoretical approaches also go beyond the mean-field approximation by including the effects of two-body collisions.The self-consistent mean-field approximation is derived using the effective nucleon-nucleon Skyrme-type interaction. The many-body problem is described next in terms of the Wigner phase space of the one-body density, which provides a basis for semi-classical approximations and leads to kinetic equations. Results of static properties of nuclei and properties associated with small amplitude dynamics are also presented. Relaxation processes, due to nucleon-nucleon collisions, are discussed next, followed by instability and large amplitude motion of excited nuclei. Lastly, the book ends with the dynamics of hot nuclei. The concepts and methods developed in this book can be used for describing properties of other many-body systems.


Proceedings of the Third SIAM International Conference on Data Mining

Proceedings of the Third SIAM International Conference on Data Mining

Author: Daniel Barbara

Publisher: SIAM

Published: 2003-01-01

Total Pages: 368

ISBN-13: 9780898715453

DOWNLOAD EBOOK

The third SIAM International Conference on Data Mining provided an open forum for the presentation, discussion and development of innovative algorithms, software and theories for data mining applications and data intensive computation. This volume includes 21 research papers.


Text Mining

Text Mining

Author: Ashok N. Srivastava

Publisher: CRC Press

Published: 2009-06-15

Total Pages: 330

ISBN-13: 1420059459

DOWNLOAD EBOOK

The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the FieldGiving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify te


Probabilistic Models of the Brain

Probabilistic Models of the Brain

Author: Rajesh P.N. Rao

Publisher: MIT Press

Published: 2002-03-29

Total Pages: 348

ISBN-13: 9780262264327

DOWNLOAD EBOOK

A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.


Energy Minimization Methods in Computer Vision and Pattern Recognition

Energy Minimization Methods in Computer Vision and Pattern Recognition

Author: Mario Figueiredo

Publisher: Springer Science & Business Media

Published: 2001-08-22

Total Pages: 654

ISBN-13: 3540425233

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2001, held in Sophia Antipolis, France in September 2001. The 42 revised full papers presented were carefully reviewed and selected from 70 submissions. The book offers topical sections on probabilistic models and estimation; image modeling and synthesis; clustering, grouping, and segmentation; optimization and graphs; and shapes, curves, surfaces, and templates.


Advances in Neural Information Processing Systems 16

Advances in Neural Information Processing Systems 16

Author: Sebastian Thrun

Publisher: MIT Press

Published: 2004

Total Pages: 1694

ISBN-13: 9780262201520

DOWNLOAD EBOOK

Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.