The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase their applications across different industries. Composites and Advanced Materials for Industrial Applications is a critical scholarly resource that examines recent advances in the field of application of composite materials. Featuring coverage on a broad range of topics such as nanocomposites, hybrid composites, and fabrication techniques, this book is a vital reference source for engineers, academics, researchers, students, professionals, and practitioners seeking current research on improvements in manufacturing processes and developments of new analytical and testing methods.
Advanced Hybrid Composite Materials and Their Applications provides a basic understanding of the engineering of hybrid composite materials. The main topics covered include the fundamental principles of hybrid composite materials, their properties, chemistry, fabrication, and applications. New and modern ways of synthetic engineering are also discussed in detail. The book brings together two very important classes of engineering materials and explains their properties in an easy-to-understand manner. It also covers the latest research outcomes and new technologies from synthetic processes right though to recent applications in different industrial sectors. This book will benefit those with no previous background knowledge as well as the expert working in this field. It will serve as a single comprehensive information resource on various types of engineering materials. - Covers fundamental principles, properties, fabrication and applications - Provides detailed information on various types of composite materials in a single resource - Covers the latest information and recent research outcomes
The automotive industry faces many challenges, including increased global competition, the need for higher-performance vehicles, a reduction in costs and tighter environmental and safety requirements. The materials used in automotive engineering play key roles in overcoming these issues: ultimately lighter materials mean lighter vehicles and lower emissions. Composites are being used increasingly in the automotive industry due to their strength, quality and light weight. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness provides a comprehensive explanation of how advanced composite materials, including FRPs, reinforced thermoplastics, carbon-based composites and many others, are designed, processed and utilized in vehicles. It includes technical explanations of composite materials in vehicle design and analysis and covers all phases of composite design, modelling, testing and failure analysis. It also sheds light on the performance of existing materials including carbon composites and future developments in automotive material technology which work towards reducing the weight of the vehicle structure. Key features: Chapters written by world-renowned authors and experts in their own fields Includes detailed case studies and examples covering all aspects of composite materials and their application in the automotive industries Unique topic integration between the impact, crash, failure, damage, analysis and modelling of composites Presents the state of the art in composite materials and their application in the automotive industry Integrates theory and practice in the fields of composite materials and automotive engineering Considers energy efficiency and environmental implications Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness is a comprehensive reference for those working with composite materials in both academia and industry, and is also a useful source of information for those considering using composites in automotive applications in the future.
Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry. After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.
This book presents an authoritative account of the potential of advanced composites such as composites, biocomposites, composites geopolymer, hybrid composites and hybrid biocomposites in aerospace application. It documents how in recent years, composite materials have grown in strength, stature, and significance to become a key material of enhanced scientific interest and resultant research into understanding their behavior for selection and safe use in a wide spectrum of technology-related applications. This collection highlights how their unique combination of superior properties such as low density, high strength, high elastic modulus, high hardness, high temperature capability, and excellent chemical and environmental stability are optimized in technologies within these field.
Hybrid Polymer Composite Materials: Applications provides a clear understanding of the present state of-the-art and the growing utility of hybrid polymer composite materials. It includes contributions from world renowned experts and discusses the combination of different kinds of materials procured from diverse resources. In addition, this volume from the four volume series provides deep insights on the potential of hybrid polymer composite materials for advanced applications. - Provides a clear understanding of the present state-of-the-art and the growing utility of hybrid polymer composite materials - Includes contributions from world renowned experts and discusses the combination of different kinds of materials procured from diverse resources - Discusses their synthesis, chemistry, processing, fundamental properties, and applications - Provides insights on the potential of hybrid polymer composite materials for advanced applications
This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous and detailed examples and over 150 illustrations. In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.
Hybrid Composite Perovskite Materials: Design to Applications discusses the manufacturing, design and characterization of organic-inorganic perovskite composite materials. The book goes beyond the basics of characterization and discusses physical properties, surface morphology and environmental stability. Users will find extensive examples of real-world products that are suitable for the needs of the market. Following a logical order, the book begins with mathematical background and then covers innovative approaches to physical modeling, analysis and design techniques. Numerous examples illustrate the proposed methods and results, making this book a sound resource on the modern research application of perovskite composites with real commercial value. Discusses the composition of perovskite materials and their properties, manufacturing and environmental stability Includes both fundamentals and state-of-the-art developments Features the main types of applications, including solar cells, photovoltaics, sensors and optoelectronic devices
Composite materials have been representing most significant breakthroughs in various industrial applications, particularly in aerospace structures, during the past thirty five years. The primary goal of Advanced Mechanics of Composite Materials is the combined presentation of advanced mechanics, manufacturing technology, and analysis of composite materials. This approach lets the engineer take into account the essential mechanical properties of the material itself and special features of practical implementation, including manufacturing technology, experimental results, and design characteristics. Giving complete coverage of the topic: from basics and fundamentals to the advanced analysis including practical design and engineering applications. At the same time including a detailed and comprehensive coverage of the contemporary theoretical models at the micro- and macro- levels of material structure, practical methods and approaches, experimental results, and optimisation of composite material properties and component performance. The authors present the results of more than 30 year practical experience in the field of design and analysis of composite materials and structures. * Eight chapters progressively covering all structural levels of composite materials from their components through elementary plies and layers to laminates* Detailed presentation of advanced mechanics of composite materials * Emphasis on nonlinear material models (elasticity, plasticity, creep) and structural nonlinearity
Advanced Fibrous Composite Materials for Ballistic Protection provides the latest information on ballistic protection, a topic that remains an important issue in modern times due to ever increasing threats coming from regional conflicts, terrorism, and anti-social behavior. The basic requirements for ballistic protection equipment are first and foremost, the prevention of a projectile from perforating, the reduction of blunt trauma to the human body caused by ballistic impact, the necessity that they are thermal and provide moisture comfort, and that they are lightweight and flexible to guarantee wearer's mobility. The main aim of this book is to present some of the most recent developments in the design and engineering of woven fabrics and their use as layering materials to form composite structures for ballistic personal protection. Chapter topics include High Performance Ballistic Fibres, Ultra-High Molecular Weight Polyethylene (UHMWPE), Ballistic Damage of Hybrid Composite Materials, Analysis of Ballistic Fabrics and Layered Composite Materials, and Multi-Scale Modeling of Polymeric Composite Materials for Ballistic Protection. - Contributions from leading experts in the field - Cutting edge developments on the engineering of ballistic materials - Comprehensive analysis of the development and uses of advanced fibrous composite materials