The intent of this text is to make available on a wildwide basis and under economic terms the key material collected by recognized lecturers for the general usage in industry. Since the authors of the various chapters of these volumes are key experts in their field, these chapters should serve as appropriate starting points for thought by many readers. [Source : d'après la préface].
Building on the success of its predecessor, Handbook of Turbomachinery, Second Edition presents new material on advances in fluid mechanics of turbomachinery, high-speed, rotating, and transient experiments, cooling challenges for constantly increasing gas temperatures, advanced experimental heat transfer and cooling effectiveness techniques, and propagation of wake and pressure disturbances. Completely revised and updated, it offers updated chapters on compressor design, rotor dynamics, and hydraulic turbines and features six new chapters on topics such as aerodynamic instability, flutter prediction, blade modeling in steam turbines, multidisciplinary design optimization.
Building on the success of its predecessor, Handbook of Turbomachinery, Second Edition presents new material on advances in fluid mechanics of turbomachinery, high-speed, rotating, and transient experiments, cooling challenges for constantly increasing gas temperatures, advanced experimental heat transfer and cooling effectiveness techniques, and propagation of wake and pressure disturbances. Completely revised and updated, it offers updated chapters on compressor design, rotor dynamics, and hydraulic turbines and features six new chapters on topics such as aerodynamic instability, flutter prediction, blade modeling in steam turbines, multidisciplinary design optimization.
This book contains the original peer-reviewed research papers presented at the 6th China Aeronautical Science and Technology Conference held in Wuzhen, Zhejiang Province, China, in September 2023. Topics covered include but are not limited to Navigation/Guidance and Control Technology, Aircraft Design and Overall Optimisation of Key Technologies, Aviation Testing Technology, Airborne Systems/Electromechanical Technology, Structural Design, Aerodynamics and Flight Mechanics, Advanced Aviation Materials and Manufacturing Technology, Advanced Aviation Propulsion Technology, and Civil Aviation Transportation. The papers presented here share the latest findings in aviation science and technology, making the book a valuable resource for researchers, engineers and students in related fields.
This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.
In the past Computational Fluid Dynamics (CFD) was confined to large organisations capable of developing and supporting their own codes. But recently there has been a rapid increase in the availability of reasonably priced commercial codes, and many more industrial organisations are now able to routinely use CFD. Advances of CFD in Fluid Machinery Design provide the perfect opportunity to find out what industry is doing and this book addresses how CFD is now being increasingly used in the design process, rather than as a post-design analysis tool. COMPLETE CONTENTS Trends in industrial use of CFD Challenges and methodologies in the design of axial flow fans for high-bypass-ratio, gas turbine engines using steady and unsteady CFD A three-dimensional inverse method based on pressure loading for the design of turbomachinery blades Application of CFD to the design and analysis of axial and centrifugal fans and compressors The design and performance of a transonic flow deswirling system – an application of current CFD design techniques tested against model and full-scale experiments Recent developments in unsteady flow modelling for turbomachinery aeroelasticity Computational investigation of flow in casing treatments for stall delay in axial flow fans Use of CFD for the three-dimensional hydrodynamic design of vertical diffuser pumps Recommendations to designers for CFD pump impeller and diffuser simulations Three dimensional CFD – a possibility to analyse piston pump flow dynamics CFD analysis of screw compressor performance Prediction of aerothermal phenomena in high-speed discstator systems Use of CFD in the design of a shaft seal for high-performance turbomachinery Users and potential users, of CFD for the design of fluid machinery, managers, designers, and researchers working in the field of ‘industrial flows’, will all find Advances of CFD in Fluid Machinery Design a valuable volume discussing state-of-the-art developments in CFD.
Computational Fluid Dynamics (CFD) is now an essential and effective tool used in the design of all types of turbomachine, and this topic constitutes the main theme of this book. With over 50 years of experience in the field of aerodynamics, Professor Naixing Chen has developed a wide range of numerical methods covering almost the entire spectrum of turbomachinery applications. Moreover, he has also made significant contributions to practical experiments and real-life designs. The book focuses on rigorous mathematical derivation of the equations governing flow and detailed descriptions of the numerical methods used to solve the equations. Numerous applications of the methods to different types of turbomachine are given and, in many cases, the numerical results are compared to experimental measurements. These comparisons illustrate the strengths and weaknesses of the methods – a useful guide for readers. Lessons for the design of improved blading are also indicated after many applications. Presents real-world perspective to the past, present and future concern in turbomachinery Covers direct and inverse solutions with theoretical and practical aspects Demonstrates huge application background in China Supplementary instructional materials are available on the companion website Aerothermodynamics of Turbomachinery: Analysis and Design is ideal for senior undergraduates and graduates studying in the fields of mechanics, energy and power, and aerospace engineering; design engineers in the business of manufacturing compressors, steam and gas turbines; and research engineers and scientists working in the areas of fluid mechanics, aerodynamics, and heat transfer. Supplementary lecture materials for instructors are available at www.wiley.com/go/chenturbo