Proliferation of distributed generation and the increased ability to monitor different parts of the electrical grid offer unprecedented opportunities for consumers and grid operators. Energy can be generated near the consumption points, which decreases transmission burdens and novel control schemes can be utilized to operate the grid closer to its limits. In other words, the same infrastructure can be used at higher capacities thanks to increased efficiency. Also, new players are integrated into this grid such as smart meters with local control capabilities, electric vehicles that can act as mobile storage devices, and smart inverters that can provide auxiliary support. To achieve stable and safe operation, it is necessary to observe and coordinate all of these components in the smartgrid.
The Smart Grid is a modern electricity grid allowing for distributed, renewable intermittent generation, partly owned by consumers. This requires advanced control and communication technologies in order to provide high quality power supply and secure generation, transmission and distribution. This book outlines these emerging technologies.
Electrical grids worldwide are experiencing major changes in terms of energy generation, transmission, delivery, and distribution in order to enhance the entire system’s control, reliability, efficiency, and safety. Advanced energy systems and technologies such as renewable sources of energy, energy storage systems, and electric vehicles (EVs) as well as equipment such as sensors, smart meters, and communication devices along with innovations in computing technologies, machine learning, and data analytics are used to modernize the electric grid and the way it is planned, operated, and managed. This book provides an overview of several aspects of grid modernization including micro-grids, smart grids, energy storage, and communication systems.
Smart Grids as Cyber Physical Systems, a new two-volume set from Wiley-Scrivener, provides a comprehensive overview of the fundamental security of supervisory control and data acquisition (SCADA) systems, offering clarity on specific operating and security issues that may arise that deteriorate the overall operation and efficiency of smart grid systems. It also provides techniques to monitor and protect systems, as well as aids for designing a threat-free system. This title discusses how artificial intelligence (AI) may be extensively deployed in the prediction of energy generation, electric grid-related line loss prediction, load forecasting, and for predicting equipment failure prevention. It also discusses power generation systems, building service systems, and explores advances in machine learning, artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms. Additionally, we will explore research contribution of experts in CPS infrastructure systems, incorporating sustainability by embedding computing and communication in day-to-day smart grid applications. This book will be of immense use to practitioners in industries focusing on adaptive configuration and optimization in smart grid systems. Through case studies, it offers a rigorous introduction to the theoretical foundations, techniques, and practical solutions CPS offers. Building CPS with effective communication, control, intelligence, and security is discussed from societal and research perspectives and a forum for researchers and practitioners to exchange ideas and achieve progress in CPS is provided by highlighting applications, advances, and research challenges. This book offers a comprehensive look at ICS cyber threats, attacks, metrics, risk, situational awareness, intrusion detection, and security testing, providing a valuable reference set for current system owners who wish to configure and operate their ICSs securely.
This resource describes the thought behind a smart-grid system and the move away from a centralized, producer-controlled network to one that is less centralized and more consumer-interactive.
Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way
The book presents a broad overview of emerging smart grid technologies and communication systems, offering a helpful guide for future research in the field of electrical engineering and communication engineering. It explores recent advances in several computing technologies and their performance evaluation, and addresses a wide range of topics, such as the essentials of smart grids for fifth generation (5G) communication systems. It also elaborates the role of emerging communication systems such as 5G, internet of things (IoT), IEEE 802.15.4 and cognitive radio networks in smart grids. The book includes detailed surveys and case studies on current trends in smart grid systems and communications for smart metering and monitoring, smart grid energy storage systems, modulations and waveforms for 5G networks. As such, it will be of interest to practitioners and researchers in the field of smart grid and communication infrastructures alike.
Pathways to a Smarter Power System studies different concepts within smart grids that are used in both industry and system regulators (e.g. distribution and transmission system operators) and research. This book covers these concepts from multiple perspectives and in multiple contexts, presenting detailed technical information on renewable energy systems, distributed generation and energy storage units, methods to activate the demand side of power systems, market structure needs, and advanced planning concepts and new operational requirements, specifically for power system protection, technological evolvements, and requirements regarding technology in ICT, power electronics and control areas. This book provides energy researchers and engineers with an indispensable guide on how to apply wider perspectives to the different technological and conceptual requirements of a smarter power system. - Includes concepts regarding conceptual and technological needs and investment planning suggestions for smart grid enabling strategies - Contains new electric power system operational concepts required by industry, along with R&D studies addressing new solutions to potential operational problems - Covers pathways to smarter power systems from successful existing examples to expected short, medium and long-term possibilities
This one-stop reference provides the state-of-the-art theory, key strategies, protocols, deployment aspects, standardization activities and experimental studies of communication and networking technologies for the smart grid. Expert authors provide all the essential information researchers need to progress in the field and to allow power systems engineers to optimize their communication systems.
This SpringerBrief discusses the rise of the smart grid from the perspective of computing and communications. It explains how current and next-generation network technology and methodologies help recognize the potential that the smart grid initiative promises. Chapters provide context on the smart grid before exploring specific challenges related to communication control and energy management. Topics include control in heterogeneous power supply, solutions for backhaul and wide area networks, home energy management systems, and technologies for smart energy management systems. Designed for researchers and professionals working on the smart grid, Communication Challenges and Solutions in the Smart Grid offers context and applications for the common issues of this developing technology. Advanced-level students interested in networking and communications engineering will also find the brief valuable.