Advanced Calculus of a Single Variable

Advanced Calculus of a Single Variable

Author: Tunc Geveci

Publisher: Springer

Published: 2016-03-30

Total Pages: 391

ISBN-13: 331927807X

DOWNLOAD EBOOK

This advanced undergraduate textbook is based on a one-semester course on single variable calculus that the author has been teaching at San Diego State University for many years. The aim of this classroom-tested book is to deliver a rigorous discussion of the concepts and theorems that are dealt with informally in the first two semesters of a beginning calculus course. As such, students are expected to gain a deeper understanding of the fundamental concepts of calculus, such as limits (with an emphasis on ε-δ definitions), continuity (including an appreciation of the difference between mere pointwise and uniform continuity), the derivative (with rigorous proofs of various versions of L’Hôpital’s rule) and the Riemann integral (discussing improper integrals in-depth, including the comparison and Dirichlet tests). Success in this course is expected to prepare students for more advanced courses in real and complex analysis and this book will help to accomplish this. The first semester of advanced calculus can be followed by a rigorous course in multivariable calculus and an introductory real analysis course that treats the Lebesgue integral and metric spaces, with special emphasis on Banach and Hilbert spaces.


Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)

Author: Lynn Harold Loomis

Publisher: World Scientific Publishing Company

Published: 2014-02-26

Total Pages: 595

ISBN-13: 9814583952

DOWNLOAD EBOOK

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.


Advanced Calculus of Several Variables

Advanced Calculus of Several Variables

Author: C. H. Edwards

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 470

ISBN-13: 1483268055

DOWNLOAD EBOOK

Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.


More Calculus of a Single Variable

More Calculus of a Single Variable

Author: Peter R. Mercer

Publisher: Springer

Published: 2014-10-17

Total Pages: 419

ISBN-13: 1493919261

DOWNLOAD EBOOK

This book goes beyond the basics of a first course in calculus to reveal the power and richness of the subject. Standard topics from calculus — such as the real numbers, differentiation and integration, mean value theorems, the exponential function — are reviewed and elucidated before digging into a deeper exploration of theory and applications, such as the AGM inequality, convexity, the art of integration, and explicit formulas for π. Further topics and examples are introduced through a plethora of exercises that both challenge and delight the reader. While the reader is thereby exposed to the many threads of calculus, the coherence of the subject is preserved throughout by an emphasis on patterns of development, of proof and argumentation, and of generalization. More Calculus of a Single Variable is suitable as a text for a course in advanced calculus, as a supplementary text for courses in analysis, and for self-study by students, instructors, and, indeed, all connoisseurs of ingenious calculations.


Calculus of One Variable

Calculus of One Variable

Author: M. Thamban Nair

Publisher: Springer Nature

Published: 2022-01-22

Total Pages: 350

ISBN-13: 3030886379

DOWNLOAD EBOOK

This book is designed to serve as a textbook for courses offered to undergraduate and graduate students enrolled in Mathematics. The first edition of this book was published in 2015. As there is a demand for the next edition, it is quite natural to take note of the several suggestions received from the users of the earlier edition over the past six years. This is the prime motivation for bringing out a revised second edition with a thorough revision of all the chapters. The book provides a clear understanding of the basic concepts of differential and integral calculus starting with the concepts of sequences and series of numbers, and also introduces slightly advanced topics such as sequences and series of functions, power series, and Fourier series which would be of use for other courses in mathematics for science and engineering programs. The salient features of the book are - precise definitions of basic concepts; several examples for understanding the concepts and for illustrating the results; includes proofs of theorems; exercises within the text; a large number of problems at the end of each chapter as home-assignments. The student-friendly approach of the exposition of the book would be of great use not only for students but also for the instructors. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in a mathematics course.


Advanced Calculus

Advanced Calculus

Author: Avner Friedman

Publisher: Courier Corporation

Published: 2012-10-16

Total Pages: 434

ISBN-13: 0486137864

DOWNLOAD EBOOK

Intended for students who have already completed a one-year course in elementary calculus, this two-part treatment advances from functions of one variable to those of several variables. Solutions. 1971 edition.


Calculus on Manifolds

Calculus on Manifolds

Author: Michael Spivak

Publisher: Westview Press

Published: 1965

Total Pages: 164

ISBN-13: 9780805390216

DOWNLOAD EBOOK

This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.


Calculus

Calculus

Author: Deborah Hughes-Hallett

Publisher: Wiley

Published: 1997-10-24

Total Pages: 0

ISBN-13: 9780471164432

DOWNLOAD EBOOK

A revision of the best selling innovative Calculus text on the market. Functions are presented graphically, numerically, algebraically, and verbally to give readers the benefit of alternate interpretations. The text is problem driven with exceptional exercises based on real world applications from engineering, physics, life sciences, and economics. Revised edition features new sections on limits and continuity, limits, l'Hopital's Rule, and relative growth rates, and hyperbolic functions.