Advanced Aerospace Applications, Volume 1. Proceedings of the 29th IMAC, A Conference and Exposition on Structural Dynamics, 2011, the first volume of six from the Conference, brings together 32 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on Aeroelasticity, Ground Testing, Dynamic Testing of Aerospace Structures, and Random Vibration.
Very light, very strong. extremely reliable -aircraft and aerospace engineers are. and have to be. very demanding partners in the materials community. The results of their research and development work is not only crucial for one special area of applications. but can also lead the way to new solutions in many other areas of advanced technology. Springer-Verlag and the undersigned editor are pleased to present in this volume. an overview of the many facets of materials science and technology which have been the objective of intensive and systematic research work during past decades in the laboratories of the German Aerospace Research Establishment. Its contents shows clearly the interrelations between goals defined by the user. fundamentals provided by the scientists and viable solutions developed by the practical engineer. The particular personal touch which has been given to this volume by its authors in dedicating it as a farewell present to Professor Wolfgang Bunk. inspiring sci entist and director of the DLR Intitute of Materials Research for more than 20 years. has obviously given an added value to this important publication. Surely. this truly cooperative endeavour will render a valuable service to a large interna tional community of interested readers. many of them having personal links to the Institute. its director and its staff.
Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals. Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail. The book's main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning. - Contains contributions from leading experts in the field - Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry - Discusses both existing commercial composite materials and those currently under research or development
"The present volume is focused on documenting the novel processing, fabrication, characterization, and testing approaches that are unique to aerospace materials/structures/systems"--Preface.
The papers in this volume cover a broad spectrum of topics that represent the truly diverse nature of the field of composite materials. This collection presents research and findings relevant to the latest advances in composites materials, specifically their use in aerospace, maritime, and even land applications. The editors have made every effort to bring together authors who put forth recent advances in their research while concurrently both elaborating on and thereby enhancing our prevailing understanding of the salient aspects related to the science, engineering, and far-reaching technological applications of composite materials.
A thorough understanding of rigid body dynamics as it relates to modern mechanical and aerospace systems requires engineers to be well versed in a variety of disciplines. This book offers an all-encompassing view by interconnecting a multitude of key areas in the study of rigid body dynamics, including classical mechanics, spacecraft dynamics, and multibody dynamics. In a clear, straightforward style ideal for learners at any level, Advanced Dynamics builds a solid fundamental base by first providing an in-depth review of kinematics and basic dynamics before ultimately moving forward to tackle advanced subject areas such as rigid body and Lagrangian dynamics. In addition, Advanced Dynamics: Is the only book that bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering Contains coverage of special applications that highlight the different aspects of dynamics and enhances understanding of advanced systems across all related disciplines Presents material using the author's own theory of differentiation in different coordinate frames, which allows for better understanding and application by students and professionals Both a refresher and a professional resource, Advanced Dynamics leads readers on a rewarding educational journey that will allow them to expand the scope of their engineering acumen as they apply a wide range of applications across many different engineering disciplines.
This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.
This book focuses on the repair of polymer composites for critical components in aerospace industries. It also covers the complexities of failure and repair of composites, types of fiber reinforcement and bonding. It includes special topics on damage assessment using on-site inspection (NDT and THz techniques) and automated repair processes for reliability and repeatability. Repair of Advanced Composites for Aerospace Applications also describes the characterization, modelling and simulation of the composites' damage mechanisms with respect to specific environments and applications. Failures associated with various composite repairing techniques for aerospace applications are also covered. Key Features: • Addresses the composites development process including damage detection and repair for aerospace applications. • Covers research on the multi-scale process modelling, material modelling, self-healing, repairing and their analyses. • Concentrates on the repair of composites for weight-sensitive applications in automobiles and aerospace. • Analyses perspectives on materials processing and material design. • Details composite joints, their failure, and operations of aircraft component in various environments. This book is aimed at researchers, professionals and graduate students in composite materials, manufacturing, aerospace engineering, advanced materials design and manufacturing, composite materials repair, and hybrid materials repair.
Sustainable Composites for Aerospace Applications presents innovative advances in the fabrication, characterization and applications of LDH polymer nanocomposites. It covers fundamental structural and chemical knowledge and explores various properties and characterization techniques, including microscopic, spectroscopic and mechanical behaviors. Users will find a strong focus on the potential applications of LDH polymer nanocomposites, such as in energy, electronics, electromagnetic shielding, biomedical, agricultural, food packaging and water purification functions. This book provides comprehensive coverage of cutting-edge research in the field of LDH polymer nanocomposites and future applications, and is an essential read for all academics, researchers, engineers and students working in this area. - Presents fundamental knowledge of LDH polymer nanocomposites, including chemical composition, structural features and fabrication techniques - Provides an analytical overview of the different types of characterization techniques and technologies - Contains extensive reviews on cutting-edge research for future applications in a variety of industries