This book, based on the analogy between contact mechanics and fracture mechanics proposed by the author twenty years ago, starts with a treatment of the surface energy and tension of solids and surface thermodynamics. The essential concepts of fracture mechanics are presented with emphasis on the thermodynamic aspects. Readers will find complete analytical results and detailed calculations for cracks submitted to pressure distributions and the Dugdale model. Contact mechanics and the contact and adherence of rough solids are also covered.
This is a unique compilation of surface preparation principles and techniques for plastics, thermosets, elastomers, and metals bonding. With emphasis on the practical, it draws together in a single source technical principles of surface science and surface treatments technologies of plastics, elastomers, and metals. It is both a reference and a guide for engineers, scientists, practitioners of surface treatment, researchers, students, and others involved in materials adhesion and processing.This book describes and illustrates the surface preparations and operations that must be applied to a surface before acceptable adhesive bonding is achieved. It is meant to be a comprehensive overview, including more detailed explanation where necessary, in a continuous and logical progression. This book is intended to be a handbook for reference of surface treating processes. The more technical chapters can be bypassed to study the applied chapters. The text is accessible to readers with a college-level background in mathematics and chemistry, but an in-depth knowledge of adhesion technology is not required.
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
At the beginning of the twentieth century, engineers and technologists would have recognized the importance of adhesion in two main aspects: First, in the display of friction between surfaces — at the time a topic of growing importance to engineers; the second in crafts requiring the joining of materials — principally wood—to form engineering structures. While physical scientists would have admitted the adhesive properties of glues, gels, and certain pastes, they regarded them as materials of uncertain formulation, too impure to be amenable to precise experiment. Biological scientists were aware also of adhesive phenomena, but the science was supported by documentation rather than understanding. By the end of the century, adhesion and adhesives were playing a crucial and deliberate role in the formulation of materials, in the design and manufacture of engineering structures without weakening rivets or pins, and in the use of thin sections and intricate shapes. Miniaturization down to the micro- and now to the nano-level of mechanical, electrical, electronic, and optical devices relied heavily on the understanding and the technology of adhesion. For most of the century, physical scientists were aware that the states of matter, whether gas, liquid, or solid, were determined by the competition between thermal energy and int- molecular binding forces. Then the solid state had to be differentiated into crystals, amorphous glasses, metals, etc. , so the importance of the molecular attractions in determining stiffness and strength became clearer.
Both solid knowledge of the basics as well as expert knowledge is needed to create rigid, long-lasting and material-specific adhesions in the industrial or trade sectors. Information that is extremely difficult and time-consuming to find in the current literature. Written by specialists in various disciplines from both academia and industry, this handbook is the very first to provide such comprehensive knowledge in a compact and well-structured form. Alongside such traditional fields as the properties, chemistry and characteristic behavior of adhesives and adhesive joints, it also treats in detail current practical questions and the manifold applications for adhesives.
Aimed at engineers and materials scientists in a wide range of sectors, this book is a unique source of surface preparation principles and techniques for plastics, thermosets, elastomers, ceramics and metals bonding. With emphasis on the practical, it draws together the technical principles of surface science and surface treatments technologies to enable practitioners to improve existing surface preparation processes to improve adhesion and, as a result, enhance product life. This book describes and illustrates the surface preparations and operations that must be applied to a surface before acceptable adhesive bonding is achieved. It is meant to be an exhaustive overview, including more detailed explanation where necessary, in a continuous and logical progression. The book provides a necessary grounding in the science and practice of adhesion, without which adequate surface preparation is impossible. Surface characterization techniques are included, as is an up-to-date assessment of existing surface treatment technologies such as Atmospheric Plasma, Degreasing, Grit blasting, laser ablation and more. Fundamental material considerations are prioritised over specific applications, making this book relevant to all industries using adhesives, such as medical, automotive, aerospace, packaging and electronics. This second edition represents a full and detailed update, with all major developments in the field included and three chapters added to cover ceramic surface treatment, plasma treatment of non-metallic materials, and the effect of additives on surface properties of plastics. - A vital resource for improving existing surface treatment processes to increase product life by creating stronger, more durable adhesive bonds - Relevant across a variety of industries, including medical, automotive and packaging - Provides essential grounding in the science of surface adhesion, and details how this links with the practice of surface treatment
Covering a wide range of industrial applications across sectors including medical applications, automotive/aerospace, packaging, electronics, and consumer goods, this book provides a complete guide to the selection of adhesives, methods of use, industrial applications, and the fundamentals of adhesion. Dr Ebnesajjad examines the selection of adhesives and adhesion methods and challenges for all major groups of substrate including plastics (thermosets and thermoplastics), elastomers, metals, ceramics and composite materials. His practical guidance covers joint design and durability, application methods, test methods and troubleshooting techniques. The science and technology of adhesion, and the principles of adhesive bonding are explained in a way that enhances the reader's understanding of the fundamentals that underpin the successful use and design of adhesives. The third edition has been updated throughout to include recent developments in the industry, with new sections covering technological advances such as nanotechnology, micro adhesion systems, and the replacement of toxic chromate technology. Provides practitioners of adhesion technology with a complete guide to bonding materials successfully Covers the whole range of commonly used substrates including plastics, metals, elastomers and ceramics, explaining basic principles and describing common materials and application techniques Introduces the range of commercially available adhesives and the selection process alongside the science and technology of adhesion
This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.
The use of adhesives is widespread and growing, and there are few modern artefacts, from the simple cereal packet, to the jumbo jet, that are without this means of joining. Adhesion Science provides an illuminating account of the science underlying the use of adhesives, a branch of chemical technology which is fundamental to the science of coatings and composite materials and to the performance of all types of bonded structures. This book guides the reader through the essential basic polymer science, and the chemistry of adhesives in use at present. It discusses surface preparation for adhesive bonding, and the use of primers and coupling agents. There is a detailed chapter on contact angles and what can be predicted from them. A simple guide on stress distribution joints and how this relates to testing is included. It also examines the interaction of adhesives and the environment, including an analysis of the resistance of joints to water, oxygen and ultra-violet light. Adhesion Science provides a comprehensive introduction to the chemistry of adhesives, and will be of interest not only to chemists, but also to readers with a background in physical or materials science.