Adhesion in Microelectronics

Adhesion in Microelectronics

Author: K. L. Mittal

Publisher: John Wiley & Sons

Published: 2014-08-25

Total Pages: 293

ISBN-13: 1118831349

DOWNLOAD EBOOK

This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesion Surface (physical or chemical) characterization of materials as it pertains to adhesion Surface cleaning as it pertains to adhesion Ways to improve adhesion Unraveling of interfacial interactions using an array of pertinent techniques Characterization of interfaces / interphases Polymer-polymer adhesion Metal-polymer adhesion (metallized polymers) Polymer adhesion to various substrates Adhesion of thin films Adhesion of underfills Adhesion of molding compounds Adhesion of different dielectric materials Delamination and reliability issues in packaged devices Interface mechanics and crack propagation Adhesion measurement of thin films and coatings


Ire Bonding in Microelectronics

Ire Bonding in Microelectronics

Author: George G. Harman

Publisher: McGraw Hill Professional

Published: 1997

Total Pages: 290

ISBN-13: 9780070326194

DOWNLOAD EBOOK

The first edition of this work is considered a classic reference in the field. This new edition updates the entire work and adds 100 pages of information covering new materials and techniques such as fine pitch


Interfacial Compatibility in Microelectronics

Interfacial Compatibility in Microelectronics

Author: Tomi Laurila

Publisher: Springer Science & Business Media

Published: 2012-01-10

Total Pages: 221

ISBN-13: 1447124707

DOWNLOAD EBOOK

Interfaces between dissimilar materials are met everywhere in microelectronics and microsystems. In order to ensure faultless operation of these highly sophisticated structures, it is mandatory to have fundamental understanding of materials and their interactions in the system. In this difficult task, the “traditional” method of trial and error is not feasible anymore; it takes too much time and repeated efforts. In Interfacial Compatibility in Microelectronics, an alternative approach is introduced. In this revised method four fundamental disciplines are combined: i) thermodynamics of materials ii) reaction kinetics iii) theory of microstructures and iv) stress and strain analysis. The advantages of the method are illustrated in Interfacial Compatibility in Microelectronics which includes: solutions to several common reliability issues in microsystem technology, methods to understand and predict failure mechanisms at interfaces between dissimilar materials and an approach to DFR based on deep understanding in materials science, rather than on the use of mechanistic tools, such as FMEA. Interfacial Compatibility in Microelectronics provides a clear and methodical resource for graduates and postgraduates alike.


Semiconductor Wafer Bonding 9: Science, Technology, and Applications

Semiconductor Wafer Bonding 9: Science, Technology, and Applications

Author: Helmut Baumgart

Publisher: The Electrochemical Society

Published: 2006

Total Pages: 398

ISBN-13: 156677506X

DOWNLOAD EBOOK

This issue of ECS Transactions covers state-of-the-art R&D results of the last 1.5 years in the field of semiconductor wafer bonding technology. Wafer Bonding Technology can be used to create novel composite materials systems and devices what would otherwise be unattainable. Wafer bonding today is rapidly expanding applications in such diverse fields as photonics, sensors, MEMS, X-ray optics, non-electronic microstructures, high performance CMOS platforms for high end servers, Si-Ge, strained SOI, Germanium-on-Insulator (GeOI), and Nanotechnologies.