Additive Number Theory The Classical Bases

Additive Number Theory The Classical Bases

Author: Melvyn B. Nathanson

Publisher: Springer Science & Business Media

Published: 1996-06-25

Total Pages: 362

ISBN-13: 9780387946566

DOWNLOAD EBOOK

[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.


Additive Number Theory The Classical Bases

Additive Number Theory The Classical Bases

Author: Melvyn B. Nathanson

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 350

ISBN-13: 1475738455

DOWNLOAD EBOOK

[Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.


Elementary Methods in Number Theory

Elementary Methods in Number Theory

Author: Melvyn B. Nathanson

Publisher: Springer Science & Business Media

Published: 2008-01-11

Total Pages: 518

ISBN-13: 0387227385

DOWNLOAD EBOOK

This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.


Additive Number Theory

Additive Number Theory

Author: David Chudnovsky

Publisher: Springer Science & Business Media

Published: 2010-08-26

Total Pages: 361

ISBN-13: 0387683615

DOWNLOAD EBOOK

This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.


A Brief Guide to Algebraic Number Theory

A Brief Guide to Algebraic Number Theory

Author: H. P. F. Swinnerton-Dyer

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 164

ISBN-13: 9780521004237

DOWNLOAD EBOOK

Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.


Additive Number Theory: Inverse Problems and the Geometry of Sumsets

Additive Number Theory: Inverse Problems and the Geometry of Sumsets

Author: Melvyn B. Nathanson

Publisher: Springer Science & Business Media

Published: 1996-08-22

Total Pages: 320

ISBN-13: 9780387946559

DOWNLOAD EBOOK

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.


数论导引

数论导引

Author:

Publisher:

Published: 2007

Total Pages: 435

ISBN-13: 9787115156112

DOWNLOAD EBOOK

本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。


Additive Combinatorics

Additive Combinatorics

Author: Terence Tao

Publisher: Cambridge University Press

Published: 2006-09-14

Total Pages: 18

ISBN-13: 1139458345

DOWNLOAD EBOOK

Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.


An Invitation to Modern Number Theory

An Invitation to Modern Number Theory

Author: Steven J. Miller

Publisher: Princeton University Press

Published: 2020-07-21

Total Pages: 526

ISBN-13: 0691215979

DOWNLOAD EBOOK

In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.


A Course in p-adic Analysis

A Course in p-adic Analysis

Author: Alain M. Robert

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 451

ISBN-13: 1475732546

DOWNLOAD EBOOK

Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.