This book is out of a workshop organized to address questions like these. The meeting was sponsored by the Santa Fe Institute and held at Sol y Sam- bra in Santa Fe, New Mexico, during July, 1993. It brought together a group of about 20 scientists from the disciplines of biology, psychology, and computer science, all studying interactions between the evolution of populations and individuals’ adaptations in those populations, and all of whom make some use of computational tools in their work.
This book is out of a workshop organized to address questions like these. The meeting was sponsored by the Santa Fe Institute and held at Sol y Sam- bra in Santa Fe, New Mexico, during July, 1993. It brought together a group of about 20 scientists from the disciplines of biology, psychology, and computer science, all studying interactions between the evolution of populations and individuals’ adaptations in those populations, and all of whom make some use of computational tools in their work.
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Ecologists now recognize that the dynamics of populations, communities, and ecosystems are strongly affected by adaptive individual behaviors. Yet until now, we have lacked effective and flexible methods for modeling such dynamics. Traditional ecological models become impractical with the inclusion of behavior, and the optimization approaches of behavioral ecology cannot be used when future conditions are unpredictable due to feedbacks from the behavior of other individuals. This book provides a comprehensive introduction to state- and prediction-based theory, or SPT, a powerful new approach to modeling trade-off behaviors in contexts such as individual-based population models where feedbacks and variability make optimization impossible. Modeling Populations of Adaptive Individuals features a wealth of examples that range from highly simplified behavior models to complex population models in which individuals make adaptive trade-off decisions about habitat and activity selection in highly heterogeneous environments. Steven Railsback and Bret Harvey explain how SPT builds on key concepts from the state-based dynamic modeling theory of behavioral ecology, and how it combines explicit predictions of future conditions with approximations of a fitness measure to represent how individuals make good—not optimal—decisions that they revise as conditions change. The resulting models are realistic, testable, adaptable, and invaluable for answering fundamental questions in ecology and forecasting ecological outcomes of real-world scenarios.
The 'Adaptive Landscape' has been a central concept in population genetics and evolutionary biology since this powerful metaphor was first formulated in 1932. This volume brings together historians of science, philosophers, ecologists, and evolutionary biologists, to discuss the state of the art from several different perspectives.
Understanding the mechanisms driving biological diversity remains a central problem in ecology and evolutionary biology. Traditional explanations assume that differences in selection pressures lead to different adaptations in geographically separated locations. This book takes a different approach and explores adaptive diversification--diversification rooted in ecological interactions and frequency-dependent selection. In any ecosystem, birth and death rates of individuals are affected by interactions with other individuals. What is an advantageous phenotype therefore depends on the phenotype of other individuals, and it may often be best to be ecologically different from the majority phenotype. Such rare-type advantage is a hallmark of frequency-dependent selection and opens the scope for processes of diversification that require ecological contact rather than geographical isolation. Michael Doebeli investigates adaptive diversification using the mathematical framework of adaptive dynamics. Evolutionary branching is a paradigmatic feature of adaptive dynamics that serves as a basic metaphor for adaptive diversification, and Doebeli explores the scope of evolutionary branching in many different ecological scenarios, including models of coevolution, cooperation, and cultural evolution. He also uses alternative modeling approaches. Stochastic, individual-based models are particularly useful for studying adaptive speciation in sexual populations, and partial differential equation models confirm the pervasiveness of adaptive diversification. Showing that frequency-dependent interactions are an important driver of biological diversity, Adaptive Diversification provides a comprehensive theoretical treatment of adaptive diversification.
The data of evolutionary biology have changed in a very radical way in recent years, the most significant input to this revolution being the advances made in developmental genetics. Another recent development is a noticeable shift away from extreme specialization in evolutionary biology. In this, we are perhaps to be reminded of George Gaylord Simpson's comments: "evolution is an incredibly complex but at the same time integrated and unitary process." The main objective of this book is to illustrate how natural adaptive systems evolve as a unity--with the particular objective of identifying and merging several special theories of evolution within the framework of a single general theory. The Evolution of Adaptive Systems provides an interdisciplinary overview of the general theory of evolution from the standpoint of the dynamic behavior of natural adaptive systems. The approach leads to a radically new fusion of the diverse disciplines of evolutionary biology, serving to resolve the considerable degree of conflict existing between different schools of contemporary thought. - The book is a timely volume written by a natural historian with a broad view of biology - The author draws examples from a large range of organisms from many different habitats and niches where interesting adaptations have evolved - Probes deeply into mechanisms of evolution such as developmental genetics, morphogenesis, chromosome structure, and cladogenesis - Clear definition of terms, with illustrations visualizing the main theoretical structures, and point-by-point summaries clearly stating the principal conclusions
Biological evolution is a fact—but the many conflicting theories of evolution remain controversial even today. When Adaptation and Natural Selection was first published in 1966, it struck a powerful blow against those who argued for the concept of group selection—the idea that evolution acts to select entire species rather than individuals. Williams’s famous work in favor of simple Darwinism over group selection has become a classic of science literature, valued for its thorough and convincing argument and its relevance to many fields outside of biology. Now with a new foreword by Richard Dawkins, Adaptation and Natural Selection is an essential text for understanding the nature of scientific debate.
Genetic constraints on adaptive evolution can be understood as those genetic aspects that prevent or reduce the potential for natural selection to result in the most direct ascent of the mean phenotype to an optimum. The contributions to this volume emphasize how genetic aspects in the transmission of traits constrain adaptive evolution. Approaches span from quantitative, population, ecological to molecular genetics. Much attention is devoted to genetic correlations, to the maintenance of quantitative genetic variation, and to the intimate relation between genetics, ecology, and evolution. This volume addresses all evolutionary biologists and explains why they should be wary of evolutionary concepts that base arguments purely on phenotypic characteristics.