Modeling, Simulation, Dynamic Optimization and Control of a Semibatch Emulsion Polymerization Process

Modeling, Simulation, Dynamic Optimization and Control of a Semibatch Emulsion Polymerization Process

Author: Iván-Dario Gil

Publisher:

Published: 2014

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

In this work, modeling, simulation, dynamic optimization and nonlinear control of an industrial emulsion polymerization process to produce poly-vinyl acetate (PVAc) are proposed. The reaction is modeled as a two-phase system composed of an aqueous phase and a particle phase. A detailed model is used to calculate the weight average molecular weight, the number average molecular weight and the dispersity. The moments of the growing and dead chains are used to represent the state of the polymer and to calculate the molecular weight distribution (MWD). The case study corresponds to an industrial reactor operated at a chemical company in Bogotá. An industrial scale reactor (11 m3 of capacity) is simulated where a semi-batch emulsion polymerization reaction of vinyl acetate is performed. Dynamic optimization problem is solved directly using a Nonlinear Programming solver. Integration of differential equations is made using Runge-Kutta method. Three different optimization problems are solved from the more simplistic (only one control variable: reactor temperature) to the more complex (three control variables : reactor temperature, initiator flow rate and monomer flow rate) in order to minimize the reaction time. A reduction of 25% of the batch time is achieved with respect to the normal operating conditions applied at the company. The results show that is possible to minimize the reaction time while some polymer desired qualities (conversion, molecular weight and solids content) satisfy the defined constraints. A nonlinear geometric control technique by using input/output linearization is adapted to the reactor temperature control. An extended Kalman filter (EKF) is implemented to estimate unmeasured states and it is tested in different cases including a robustness study where model errors are introduced to verify its good performance. After verification of controller performance, some process changes were proposed in order to improve process productivity and polymer quality. Finally, the optimal temperature profile and optimal feed policies of the monomer and initiator, obtained in a dynamic optimization step, are used to provide the optimal set points for the nonlinear control. The results show that the nonlinear controller designed here is appropriate to follow the optimal temperature trajectories calculated previously.


23 European Symposium on Computer Aided Process Engineering

23 European Symposium on Computer Aided Process Engineering

Author: R. Paulen

Publisher: Elsevier Inc. Chapters

Published: 2013-06-10

Total Pages: 16

ISBN-13: 012808619X

DOWNLOAD EBOOK

We study dynamic optimization of a lab-scale semi-batch emulsion copolymerization reactor for styrene and butyl acrylate in the presence of n-dodecyl mercaptan as chain transfer agent (CTA). The previously developed mathematical model of the polymerization reactions is used to predict the glass transition temperature of produced polymer, the global monomer conversion, the number and weight average molecular weights, the particle size distribution, and the amount of residual monomers. This model is implemented within gPROMS environment for modeling and optimization. It is desired to compute optimal profiles of feed rate of pre-emulsioned monomers and CTA which optimize properties (quantitative as well as qualitative) of polymers produced during the reaction subject to operational conditions and constraints.


Dynamic Modelling and Optimization of Polymerization Processes in Batch and Semi-batch Reactors

Dynamic Modelling and Optimization of Polymerization Processes in Batch and Semi-batch Reactors

Author: W. H. B. W. Ibrahim

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Dynamic modelling and optimization of three different processes namely (a) bulk polymerization of styrene, (b) solution polymerization of methyl methacrylate (MMA) and (c) emulsion copolymerization of Styrene and MMA in batch and semi-batch reactors are the focus of this work. In this work, models are presented as sets of differential-algebraic equations describing the process. Different optimization problems such as (a) maximum conversion (Xn), (b) maximum number average molecular weight (Mn) and (c) minimum time to achieve the desired polymer molecular properties (defined as pre-specified values of monomer conversion and number average molecular weight) are formulated. Reactor temperature, jacket temperature, initial initiator concentration, monomer feed rate, initiator feed rate and surfactant feed rate are used as optimization variables in the optimization formulations. The dynamic optimization problems were converted into nonlinear programming problem using the CVP techniques which were solved using efficient SQP (Successive Quadratic Programming) method available within the gPROMS (general PROcess Modelling System) software. The process model used for bulk polystyrene polymerization in batch reactors, using 2, 2 azobisisobutyronitrile catalyst (AIBN) as initiator was improved by including the gel and glass effects. The results obtained from this work when compared with the previous study by other researcher which disregarded the gel and glass effect in their study which show that the batch time operation are significantly reduced while the amount of the initial initiator concentration required increases. Also, the termination rate constant decreases as the concentration of the mixture increases, resulting rapid monomer conversion. The process model used for solution polymerization of methyl methacrylate (MMA) in batch reactors, using AIBN as the initiator and Toluene as the solvent was improved by including the free volume theory to calculate the initiator efficiency, f. The effects of different f was examined and compared with previous work which used a constant value of f 0.53. The results of these studies show that initiator efficiency, f is not constant but decreases with the increase of monomer conversion along the process. The determination of optimal control trajectories for emulsion copolymerization of Styrene and MMA with the objective of maximizing the number average molecular weight (Mn) and overall conversion (Xn) were carried out in batch and semi-batch reactors. The initiator used in this work is Persulfate K2S2O8 and the surfactant is Sodium Dodecyl Sulfate (SDS). Reduction of the pre-batch time increases the Mn but decreases the conversion (Xn). The sooner the addition of monomer into the reactor, the earlier the growth of the polymer chain leading to higher Mn. Besides that, Mn also can be increased by decreasing the initial initiator concentration (Ci0). Less oligomeric radicals will be produced with low Ci0, leading to reduced polymerization loci thus lowering the overall conversion. On the other hand, increases of reaction temperature (Tr) will decrease the Mn since transfer coefficient is increased at higher Tr leading to increase of the monomeric radicals resulting in an increase in termination reaction.


Synthesis and Optimization of Emulsion Polymers

Synthesis and Optimization of Emulsion Polymers

Author: Daisy Jauregui

Publisher:

Published: 2016

Total Pages: 63

ISBN-13:

DOWNLOAD EBOOK

Synthetic latex or resin is perhaps the most important component of any paint formulation. As the binder, it holds all ingredients in a paint together and is responsible for film formation. Various latexes are used in industry though acrylic resins have shown to impart superior paint properties.This project is concerned with the synthesis of an acrylic latex. Various emulsion polymerization processes were used including semi-batch, starved-feed, and in-situ seeded in the attempt to produce a stable latex that can be used in a broader study concerning the syneresis and rheology mechanisms of latex/thickener systems. In addition, this project investigates the optimization of the emulsion polymerization teaching lab used in the Polymers and Coatings masters program. Here, a batch emulsion polymerization process was studied and various particle stability aspects altered to produce a stable latex with minimum coagulum.


Polymer Reactor Engineering

Polymer Reactor Engineering

Author: C. McGreavy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 245

ISBN-13: 9401113386

DOWNLOAD EBOOK

Approximately half of the world production of the petrochemical industry (more than 100 million tonnes) is in the form of polymers, yet it would probably surprise most people to learn how much their lifestyle depends on polymers ranging, as they do, from detergents, kitchenware and electrical appliances to furnishings and a myriad other domestic goods. Still less are they likely to be aware of the extensive part they play in engineering applications for mechanical machine components and advanced high performance aircraft. This versatility derives from the fact that polymeric materials are made up of a range of molecules of varying length, whose properties are related to molecular structure and the proportions of the chains in the mixture. For example, polypropylene is a commodity polymer which is produced in hun dreds of different grades to meet specific market requirements. This depends on the catalyst as well as the operating conditions and reactor design. A major area for growth is in substituting polymers for conventional materials such as ceramics and metals. Not only can they match these materials in terms of mechanical strength and robustness but they have very good resistance to chemical attack. Polyamides, for example, are widely used for car bumpers and new polymers are being developed for engine manifolds and covers. In 1993 there is, typically, 100 kg of various polymers used in cars and this is continually increasing, giving a net weight reduction and hence better fuel economy.