Adaptive Control with Recurrent High-order Neural Networks

Adaptive Control with Recurrent High-order Neural Networks

Author: George A. Rovithakis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 203

ISBN-13: 1447107853

DOWNLOAD EBOOK

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.


System Identification and Adaptive Control

System Identification and Adaptive Control

Author: Yiannis Boutalis

Publisher: Springer Science & Business

Published: 2014-04-23

Total Pages: 316

ISBN-13: 3319063642

DOWNLOAD EBOOK

Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.


Discrete-Time High Order Neural Control

Discrete-Time High Order Neural Control

Author: Edgar N. Sanchez

Publisher: Springer

Published: 2008-06-24

Total Pages: 116

ISBN-13: 3540782893

DOWNLOAD EBOOK

Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.


Applications of Neural Adaptive Control Technology

Applications of Neural Adaptive Control Technology

Author: Jens Kalkkuhl

Publisher: World Scientific

Published: 1997

Total Pages: 328

ISBN-13: 9789810231514

DOWNLOAD EBOOK

This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.


Applied Artificial Higher Order Neural Networks for Control and Recognition

Applied Artificial Higher Order Neural Networks for Control and Recognition

Author: Zhang, Ming

Publisher: IGI Global

Published: 2016-05-05

Total Pages: 538

ISBN-13: 1522500642

DOWNLOAD EBOOK

In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.


Emerging Capabilities and Applications of Artificial Higher Order Neural Networks

Emerging Capabilities and Applications of Artificial Higher Order Neural Networks

Author: Zhang, Ming

Publisher: IGI Global

Published: 2021-02-05

Total Pages: 540

ISBN-13: 1799835650

DOWNLOAD EBOOK

Artificial neural network research is one of the new directions for new generation computers. Current research suggests that open box artificial higher order neural networks (HONNs) play an important role in this new direction. HONNs will challenge traditional artificial neural network products and change the research methodology that people are currently using in control and recognition areas for the control signal generating, pattern recognition, nonlinear recognition, classification, and prediction. Since HONNs are open box models, they can be easily accepted and used by individuals working in information science, information technology, management, economics, and business fields. Emerging Capabilities and Applications of Artificial Higher Order Neural Networks contains innovative research on how to use HONNs in control and recognition areas and explains why HONNs can approximate any nonlinear data to any degree of accuracy, their ease of use, and how they can have better nonlinear data recognition accuracy than SAS nonlinear procedures. Featuring coverage on a broad range of topics such as nonlinear regression, pattern recognition, and data prediction, this book is ideally designed for data analysists, IT specialists, engineers, researchers, academics, students, and professionals working in the fields of economics, business, modeling, simulation, control, recognition, computer science, and engineering research.


Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine

Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine

Author: Oscar Castillo

Publisher: Springer Nature

Published: 2019-11-23

Total Pages: 354

ISBN-13: 3030341356

DOWNLOAD EBOOK

This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.


Artificial Neural Networks – ICANN 2009

Artificial Neural Networks – ICANN 2009

Author: Cesare Alippi

Publisher: Springer Science & Business Media

Published: 2009-09-03

Total Pages: 1062

ISBN-13: 3642042732

DOWNLOAD EBOOK

This volume is part of the two-volume proceedings of the 19th International Conf- ence on Artificial Neural Networks (ICANN 2009), which was held in Cyprus during September 14–17, 2009. The ICANN conference is an annual meeting sp- sored by the European Neural Network Society (ENNS), in cooperation with the - ternational Neural Network Society (INNS) and the Japanese Neural Network Society (JNNS). ICANN 2009 was technically sponsored by the IEEE Computational Intel- gence Society. This series of conferences has been held annually since 1991 in various European countries and covers the field of neurocomputing, learning systems and related areas. Artificial neural networks provide an information-processing structure inspired by biological nervous systems. They consist of a large number of highly interconnected processing elements, with the capability of learning by example. The field of artificial neural networks has evolved significantly in the last two decades, with active partici- tion from diverse fields, such as engineering, computer science, mathematics, artificial intelligence, system theory, biology, operations research, and neuroscience. Artificial neural networks have been widely applied for pattern recognition, control, optimization, image processing, classification, signal processing, etc.