Acta Numerica is an annual volume presenting survey papers in numerical analysis accessible to graduate students and researchers. Highlights of the 1994 issue are articles on domain decomposition, mesh adaption, pseudospectral methods and neural networks.
Numerical analysis is the subject of applied mathematics concerned mainly with using computers in evaluating or approximating mathematical models. As such, it is crucial to all applications of mathematics in science and engineering, as well as being an important discipline on its own. Acta Numerica surveys annually the most important developments in numerical analysis and scientific computing. The subjects and authors of the substantive survey articles are chosen by a distinguished international editorial board so as to report the most important developments in the subject in a manner accessible to the wider community of professionals with an interest in scientific computing.
A high-impact factor, prestigious annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.
Acta Numerica has established itself as the prime forum for the presentation of definitive reviews of numerical analysis topics. The invited review papers, by leaders in their respective fields, allow researchers and graduate students alike quickly to grasp trends and developments. Highlights of the 1995 issue include articles on sequential quadratic programming, mesh adaption, free boundary problems and particle methods in continuum computations.
Acta Numerica is an annual volume presenting survey papers in numerical analysis. Each year the editorial board selects significant topics and invites papers from authors who have made notable contributions to the development of that topic. The articles are intended to summarize the field at a level accessible to graduate students and researchers. Acta Numerica has proved to be a valuable tool not only for researchers and professionals wishing to develop their understanding of the subject and follow developments, but also as an advanced teaching aid at colleges and universities. Articles in previous volumes have been expanded into both monographs and textbooks, and many of the original articles themselves have been used as the prime resource for graduate courses.
The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.