The general objectives of this investigation were to determine and study those characteristics of the sea floor that affect sound propagation and the prediction of sonar performance; to support underwater acoustics' experiments and theory by furnishing information on the mass physical properties of sediments and rocks in the form of geoacoustic models of the sea floor; and to develop models of the sea floor which include gradients of sound velocity and attenuation, density, and elastic properties. Specifically, the minor objectives were to revise and review earlier work on the relations between frequency and attenuation of compressional (sound) waves in marine sediments and on the relations between attenuation and sediment porosity. The major objectives were to determine and predict variations of the attenuation of sound waves with depth in the sea floor.
Seafloor investigation has long been a feature of not only seismology but also of acoustics. Indeed it was acoustics that produced depth sounders, giving us the first capability of producing both global and local maps of the seafloor. Subsequently, better instrumentation and techniques led to a clearer, more quantitative picture of the seabed itself, which stimulated new hypotheses such as seafloor spreading through the availability of more reliable data on sediment thickness over ocean basins and other bottom features. Geologists and geophysicists have used both acoustic and seismic methods to study the seabed by considering the propagation of signals arising from both natural seismic events and man-made impulsive sources. Although significant advances have been made in instrumentation, such as long towed geophysical arrays, ai r guns and ocean bot tom seismometers, the pic ture of the seafloor is still far from complete. Underwater acoustics concerns itself today with the phenomena of propagation and noise at frequencies and ranges that require an understanding of acoustic interaction at both of its boundaries, the sea surface and seafloor, over depths ranging from tens to thousands of meters. Much of the earlier higher frequency (>1 kHz) work included the characterization of the seafloor in regimes of reflection coefficients which were empirically derived from surveys. The results of these studies met with only limited success, confined as they were to those areas where survey data existed and lacking a physical understanding of the processes of reflection and scattering.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. - Provides a complete and up-to-date treatment of all major subjects of underwater acoustics - Presents chapters written by recognized experts in their individual field - Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics - Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples - Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics - Includes a comprehensive list of literature references for each chapter
The interaction of acoustic fields with submerged elastic structures, both by propagation and scattering, is being investigated at various institutions and laboratories world-wide with ever-increasing sophistication of experiments and analysis. This book offers a collection of contributions from these research centers that represent the present state-of-the-art in the study of acoustic elastic interaction, being on the cutting edge of these investigations. This includes the description of acoustic scattering from submerged elastic objects and shells by the Resonance Scattering Theory of Flax, Dragonette and Überall, and the interaction of these phenomena in terms of interface waves. It also includes the use of this theory for the purpose of inverse scattering, i.e. the determination of the scattered objects properties from the received acoustic backscattered signals. The problem of acoustically excited waves in inhomogeneous and anisotropic materials, and of inhomogeneous propagating waves is considered. Vibrations and resonances of elastic shells, including shells with various kinds of internal attachments, are analyzed. Acoustic scattering experiments are described in the time domain, and on the basis of the Wigner-Ville distribution. Acoustic propagation in the water column over elastic boundaries is studied experimentally both in laboratory tanks, and in the field, and is analyzed theoretically. Ultrasonic nondestructive testing, including such aspects like probe modelling, scattering by various types of cracks, receiving probes and calibration by a side-drilled hole is also studied in details.A comprehensive picture of these complex phenomena and other aspects is presented in the book by researchers that are experts in each of these domains, giving up-to-date accounts of the field in all these aspects.