Annotation Proceedings of the October 1992 workshop, including papers and poster sessions. Papers address accelerator reliability, beam diagnostics, beam monitors, signal processing, fluorescent screens, timing systems, and software analysis. Lacks an index. Annotation c. by Book News, Inc., Portland, Or.
From the reviews: "This book is a very welcome and valuable addition to the accelerator literature. As noted by the authors, there is relatively little material in the book specifically for low-energy machines, but industrial users may still find it useful to read." Cern Courier
Some twenty years ago the author published a book entitled The Physics of Particle Detectors. Much has evolved since that time, not in the basic physics, but in the complexity, number and versatility of the detectors commonly used in experiments, beam-lines and accelerators. Those changes have been heavily influenced by the concurrent dramatic changes in the microelectronics industry. In parallel, the use of computer-aided teaching has also greatly improved. The present volume explores the physics needed to understand the full suite of front-end devices in use today. In particular the physics explanation is made concurrently with the specific device being discussed, thus making the coupling more immediate. That study is made more interactive by using newer educational tools now available such as dynamic Matlab Apps.
Choice Recommended Title, January 2020 Providing a vital resource in tune with the massive advancements in accelerator technologies that have taken place over the past 50 years, Accelerator Radiation Physics for Personnel and Environmental Protection is a comprehensive reference for accelerator designers, operators, managers, health and safety staff, and governmental regulators. Up-to-date with the latest developments in the field, it allows readers to effectively work together to ensure radiation safety for workers, to protect the environment, and adhere to all applicable standards and regulations. This book will also be of interest to graduate and advanced undergraduate students in physics and engineering who are studying accelerator physics. Features: Explores accelerator radiation physics and the latest results and research in a comprehensive single volume, fulfilling a need in the market for an up-to-date book on this topic Contains problems designed to enhance learning Addresses undergraduates with a background in math and/or science
This book summarizes the experience of many years of teamwork with my group, the beam diagnostics group of GSI. For a long time the group was also responsible for operating the machines and application programming. In my opinion, this connection was very e?cient: ?rst, because a beam diagnostic system has to place powerful tools at the operators’ disposal; second, because data evaluation and presentation of results for machine operation demand application programs which can be handled not only by skilled experts. On the other hand, accelerator developments and improvements as well as commissioning of new machines by specialists require more complex measu- ments than those for routine machine operation. A modern beam diagnostic system, including the software tools, has to cover these demands, too. Therefore, this book should motivate physicists, constructors, electronic engineers, and computer experts to work together during the design and daily use of a beam diagnostic system. This book aims to give them ideas and tools for their work. I would not have been able to write this book without a good education in physics and many discussions with competent leaders, mentors, and c- leagues. After working about 40 years in teams on accelerators, there are so many people I have to thank that it is impossible to mention them all by name here.
Considers authorization of funds for an AEC linear electron accelerator to be located at Stanford Univ. Appendixes include. a. "Proposal for a Two-Mile Linear Electron Accelerator," by Stanford Univ, Apr. 1957 (p. 283-426). b. "Review of the Stanford Proposal for a Two-Mile Linear Electron Accelerator," by William M. Brobeck P Assocs, June 1958 (p. 427-525). c. "Site Feasibility of Stanford's Proposed Two-Mile Linear Electron Accelerator," by Frank W. Atchley and Robert O. Dobbs, July 1959 (p. 577-649).
Considers authorization of funds for an AEC linear electron accelerator to be located at Stanford Univ. Appendixes include. a. "Proposal for a Two-Mile Linear Electron Accelerator," by Stanford Univ, Apr. 1957 (p. 283-426). b. "Review of the Stanford Proposal for a Two-Mile Linear Electron Accelerator," by William M. Brobeck P Assocs, June 1958 (p. 427-525). c. "Site Feasibility of Stanford's Proposed Two-Mile Linear Electron Accelerator," by Frank W. Atchley and Robert O. Dobbs, July 1959 (p. 577-649).
Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.
Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The objective of the school was to establish a common knowledge base for the future laser-plasma accelerator community. These published proceedings aim to provide a wider community with a reference covering a wide range of topics, knowledge of which will be necessary to future research on laser-plasma acceleration. The book also provides references to selected existing literature for further reading.