This book takes a new look at the subject, choosing a geometric approach rather than the usual algebraic or combinatorial approach. It starts with a wealth of examples of how to be mathematically certain whether two objects are the same from the point of view of topology. After introducing surfaces, the book explores the properties of polyhedra drawn on these surfaces. More refined tools are developed in a chapter on winding number.
This is a book of elementary geometric topology, in which geometry, frequently illustrated, guides calculation. The book starts with a wealth of examples, often subtle, of how to be mathematically certain whether two objects are the same from the point of view of topology.After introducing surfaces, such as the Klein bottle, the book explores the properties of polyhedra drawn on these surfaces. Even in the simplest case, of spherical polyhedra, there are good questions to be asked. More refined tools are developed in a chapter on winding number, and an appendix gives a glimpse of knot theory.There are many examples and exercises making this a useful textbook for a first undergraduate course in topology. For much of the book the prerequisites are slight, though, so anyone with curiosity and tenacity will be able to enjoy the book. As well as arousing curiosity, the book gives a firm geometrical foundation for further study."A Topological Aperitif provides a marvellous introduction to the subject, with many different tastes of ideas.Stephen Huggett and David Jordan have excellent credentials for explaining the beauty of this curiously austere but potentially enormously general form of geometry".Professor Sir Roger Penrose OM FRS, Mathematical Institute, Oxford, UK
Topology is a branch of mathematics packed with intriguing concepts, fascinating geometrical objects, and ingenious methods for studying them. The authors have written this textbook to make the material accessible to undergraduate students without requiring extensive prerequisites in upper-level mathematics. The approach is to cultivate the intuitive ideas of continuity, convergence, and connectedness so students can quickly delve into knot theory, the topology of surfaces and three-dimensional manifolds, fixed points and elementary homotopy theory. The fundamental concepts of point-set topology appear at the end of the book when students can see how this level of abstraction provides a sound logical basis for the geometrical ideas that have come before. This organization exposes students to the exciting world of topology now(!) rather than later. Students using this textbook should have some exposure to the geometry of objects in higher-dimensional Euclidean spaces together with an appreciation of precise mathematical definitions and proofs.
How is a subway map different from other maps? What makes a knot knotted? What makes the M�bius strip one-sided? These are questions of topology, the mathematical study of properties preserved by twisting or stretching objects. In the 20th century topology became as broad and fundamental as algebra and geometry, with important implications for science, especially physics. In this Very Short Introduction Richard Earl gives a sense of the more visual elements of topology (looking at surfaces) as well as covering the formal definition of continuity. Considering some of the eye-opening examples that led mathematicians to recognize a need for studying topology, he pays homage to the historical people, problems, and surprises that have propelled the growth of this field. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Explorations in Topology gives students a rich experience with low-dimensional topology, enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that would help them make sense of a future, more formal topology course. The innovative story-line style of the text models the problems-solving process, presents the development of concepts in a natural way, and through its informality seduces the reader into engagement with the material. The end-of-chapter Investigations give the reader opportunities to work on a variety of open-ended, non-routine problems, and, through a modified "Moore method", to make conjectures from which theorems emerge. The students themselves emerge from these experiences owning concepts and results. The end-of-chapter Notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides opportunities for continued involvement in "research" beyond the topics of the book. * Students begin to solve substantial problems right from the start* Ideas unfold through the context of a storyline, and students become actively involved* The text models the problem-solving process, presents the development of concepts in a natural way, and helps the reader engage with the material
Exploring common themes in modern art, mathematics, and science, including the concept of space, the notion of randomness, and the shape of the cosmos. This is a book about art—and a book about mathematics and physics. In Lumen Naturae (the title refers to a purely immanent, non-supernatural form of enlightenment), mathematical physicist Matilde Marcolli explores common themes in modern art and modern science—the concept of space, the notion of randomness, the shape of the cosmos, and other puzzles of the universe—while mapping convergences with the work of such artists as Paul Cezanne, Mark Rothko, Sol LeWitt, and Lee Krasner. Her account, focusing on questions she has investigated in her own scientific work, is illustrated by more than two hundred color images of artworks by modern and contemporary artists. Thus Marcolli finds in still life paintings broad and deep philosophical reflections on space and time, and connects notions of space in mathematics to works by Paul Klee, Salvador Dalí, and others. She considers the relation of entropy and art and how notions of entropy have been expressed by such artists as Hans Arp and Fernand Léger; and traces the evolution of randomness as a mode of artistic expression. She analyzes the relation between graphical illustration and scientific text, and offers her own watercolor-decorated mathematical notebooks. Throughout, she balances discussions of science with explorations of art, using one to inform the other. (She employs some formal notation, which can easily be skipped by general readers.) Marcolli is not simply explaining art to scientists and science to artists; she charts unexpected interdependencies that illuminate the universe.
Have you ever faced a mathematical problem and had no idea how to approach it? Or perhaps you had an idea but got stuck halfway through? This book guides you in developing your creativity, as it takes you on a voyage of discovery into mathematics. Readers will not only learn strategies for solving problems and logical reasoning, but they will also learn about the importance of proofs and various proof techniques. Other topics covered include recursion, mathematical induction, graphs, counting, elementary number theory, and the pigeonhole, extremal and invariance principles. Designed to help students make the transition from secondary school to university level, this book provides readers with a refreshing look at mathematics and deep insights into universal principles that are valuable far beyond the scope of this book. Aimed especially at undergraduate and secondary school students as well as teachers, this book will appeal to anyone interested in mathematics. Only basic secondary school mathematics is required, including an understanding of numbers and elementary geometry, but no calculus. Including numerous exercises, with hints provided, this textbook is suitable for self-study and use alongside lecture courses.