The revised syllabus for core courses in CBCS / Semester system is being followed by all the universities in Andhra Pradesh, from the academic year 2020 - 2021. This book strictly covers the new curriculum for Course I (Semester I - 1st year, 1st semester) under this syllabus
This book has been thoroughly revised according to the syllabus of 1st year's 2nd semester students of all universities in Andhra Pradesh. The revised syllabus is being adopted by all the universities in Andhra Pradesh, following Common Core Syllabus 2015-16 (revised in 2016) based on CBCS. This book strictly covers the new curriculum for 1st year, 2nd semester of the theory as well as practical.
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
This book is especially prepared for B.A., B.Sc. and honours (Mathematics and Physics), M.A/M.Sc. (Mathematics and Physics), B.E. Students of Various Universities and for I.A.S., P.C.S., AMIE, GATE, and other competitve exams.Almost all the chapters have been rewritten so that in the present form, the reader will not find any difficulty in understanding the subject matter.The matter of the previous edition has been re-organised so that now each topic gets its proper place in the book.More solved examples have been added so that now each topic gets its proper place in the book. References to the latest papers of various universities and I.A.S. examination have been made at proper places.
The book has been divided into nine chapters. It deals the introduction to differential equation, differential equation of first order but not of first degree, the differential equation of first order and first degree, application of first order differential, linear equations, methods of variation of parameters and undetermined coefficients, linear equations of second order, ordinary simultaneous differential equation, total differential equations (Pfaffian Differential Forms and Equations). The book include fundamental concepts, illustrative examples and applications to various problems. Contents: An introduction to Differential Equations, Differential Equations of First Order but not of First Degree, Differential Equations of First Order and First Degree, Applications of first Order Differential, Linear Equations, Methods of Variation of Parameters and Undermined Coefficients, Linear Equations of Second Order, Ordinary Simultaneously Differential Equations, Total Differential Equations (Pfaffian Differential Forms and Equations).
This highly visual introductory textbook provides a rigorous mathematical foundation for all solution methods and reinforces ties to physical motivation.
This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.