A Survey on Classical Minimal Surface Theory

A Survey on Classical Minimal Surface Theory

Author: William Meeks

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 195

ISBN-13: 0821869124

DOWNLOAD EBOOK

Meeks and Pérez extend their 2011 survey article "The classical theory of Minimal surfaces" in the Bulletin of the American Mathematical Society to include other recent research results. Their topics include minimal surfaces with finite topology and more than one end, limits of embedded minimal surfaces without local area or curvature bounds, conformal structure of minimal surfaces, embedded minimal surfaces of finite genus, topological aspects of minimal surfaces, and Calabi-Yau problems. There is no index. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com).


A Course in Minimal Surfaces

A Course in Minimal Surfaces

Author: Tobias Holck Colding

Publisher: American Mathematical Society

Published: 2024-01-18

Total Pages: 330

ISBN-13: 1470476401

DOWNLOAD EBOOK

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.


Minimal Surfaces from a Complex Analytic Viewpoint

Minimal Surfaces from a Complex Analytic Viewpoint

Author: Antonio Alarcón

Publisher: Springer Nature

Published: 2021-03-10

Total Pages: 430

ISBN-13: 3030690563

DOWNLOAD EBOOK

This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.


Minimal Surfaces

Minimal Surfaces

Author: Ulrich Dierkes

Publisher: Springer

Published: 2010-10-01

Total Pages: 692

ISBN-13: 9783642116971

DOWNLOAD EBOOK

Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.


New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn

New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn

Author: Antonio Alarcón

Publisher: American Mathematical Soc.

Published: 2020-05-13

Total Pages: 90

ISBN-13: 1470441616

DOWNLOAD EBOOK

All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in Rn with any given conformal structure, complete non-orientable minimal surfaces in Rn with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of CPn−1 in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of Rn.


Classical Algebraic Geometry

Classical Algebraic Geometry

Author: Igor V. Dolgachev

Publisher: Cambridge University Press

Published: 2012-08-16

Total Pages: 653

ISBN-13: 1139560786

DOWNLOAD EBOOK

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.


Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems

Lectures on Minimal Surfaces: Introduction, fundamentals, geometry and basic boundary value problems

Author: Johannes C. C. Nitsche

Publisher:

Published: 1989

Total Pages: 563

ISBN-13: 9780521244275

DOWNLOAD EBOOK

This book is a revised and translated version of the first five chapters of Vorlesungen ^D"uber Minimalfl^D"achen. It deals with the parametric minimal surface in Euclidean space. The author presents a broad survey that extends from the classical beginnings to the current situation while highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks.


Minimal Surfaces: Integrable Systems and Visualisation

Minimal Surfaces: Integrable Systems and Visualisation

Author: Tim Hoffmann

Publisher: Springer Nature

Published: 2021-05-06

Total Pages: 280

ISBN-13: 3030685411

DOWNLOAD EBOOK

This book collects original peer-reviewed contributions to the conferences organised by the international research network “Minimal surfaces: Integrable Systems and Visualization” financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.


Function Theory and ℓp Spaces

Function Theory and ℓp Spaces

Author: Raymond Cheng

Publisher: American Mathematical Soc.

Published: 2020-05-28

Total Pages: 239

ISBN-13: 1470455935

DOWNLOAD EBOOK

The classical ℓp sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces ℓpA of analytic functions whose Taylor coefficients belong to ℓp. Relations between the Banach space ℓp and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of ℓpA and a discussion of the Wiener algebra ℓ1A. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.


Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem

Minimal Surfaces, Stratified Multivarifolds, and the Plateau Problem

Author: A. T. Fomenko

Publisher: American Mathematical Soc.

Published: 1991-02-21

Total Pages: 424

ISBN-13: 9780821898277

DOWNLOAD EBOOK

Plateau's problem is a scientific trend in modern mathematics that unites several different problems connected with the study of minimal surfaces. In its simplest version, Plateau's problem is concerned with finding a surface of least area that spans a given fixed one-dimensional contour in three-dimensional space--perhaps the best-known example of such surfaces is provided by soap films. From the mathematical point of view, such films are described as solutions of a second-order partial differential equation, so their behavior is quite complicated and has still not been thoroughly studied. Soap films, or, more generally, interfaces between physical media in equilibrium, arise in many applied problems in chemistry, physics, and also in nature. In applications, one finds not only two-dimensional but also multidimensional minimal surfaces that span fixed closed ``contours'' in some multidimensional Riemannian space. An exact mathematical statement of the problem of finding a surface of least area or volume requires the formulation of definitions of such fundamental concepts as a surface, its boundary, minimality of a surface, and so on. It turns out that there are several natural definitions of these concepts, which permit the study of minimal surfaces by different, and complementary, methods. In the framework of this comparatively small book it would be almost impossible to cover all aspects of the modern problem of Plateau, to which a vast literature has been devoted. However, this book makes a unique contribution to this literature, for the authors' guiding principle was to present the material with a maximum of clarity and a minimum of formalization. Chapter 1 contains historical background on Plateau's problem, referring to the period preceding the 1930s, and a description of its connections with the natural sciences. This part is intended for a very wide circle of readers and is accessible, for example, to first-year graduate students. The next part of the book, comprising Chapters 2-5, gives a fairly complete survey of various modern trends in Plateau's problem. This section is accessible to second- and third-year students specializing in physics and mathematics. The remaining chapters present a detailed exposition of one of these trends (the homotopic version of Plateau's problem in terms of stratified multivarifolds) and the Plateau problem in homogeneous symplectic spaces. This last part is intended for specialists interested in the modern theory of minimal surfaces and can be used for special courses; a command of the concepts of functional analysis is assumed.