Color vision is considered a microcosm of the visual science. Special physiological and psychological processes make this scientific topic an intriguing and complex research field that can aggregates around molecular biologists, neurophysiologists, physicists, psychophysicists and cognitive neuroscientists. Our purpose is to present the frontier knowledge of this area of visual science, showing, in the end, the future prospects of application and basic studies of color perception.
I have been asked to write a brief foreword to this volume honoring Hisako Ikeda, providing a review of the accomplishments in our field over the past four decades, when Hisako was an active participant. This I am delighted to do. It has been a most exciting time in vision research and Hisako has been right in the middle of much of the excitement, publishing on a wide variety of topics and providing much new data and many new insights. Hisako's research career can be divided by decades into four quite distinct areas of inquiry. In the 1950s, as a student in Japan, her research interests were psychophysical in nature, and she was concerned with visual illusions, figural aftereffects, and motion detec tion. In the 1960s, after her move to London, she began electrophysiological studies. Much of her work in the 1960s was concerned with the electroretinogram (ERG), its components, and the use of this electrical response for evaluating spectral sensitivities of the eye and retinal degenerations. This work represented the beginning of her electrodiagnostic clinical work, which continued until her retirement.
A comprehensive review of contemporary research in the vision sciences, reflecting the rapid advances of recent years. Visual science is the model system for neuroscience, its findings relevant to all other areas. This essential reference to contemporary visual neuroscience covers the extraordinary range of the field today, from molecules and cell assemblies to systems and therapies. It provides a state-of-the art companion to the earlier book The Visual Neurosciences (MIT Press, 2003). This volume covers the dramatic advances made in the last decade, offering new topics, new authors, and new chapters. The New Visual Neurosciences assembles groundbreaking research, written by international authorities. Many of the 112 chapters treat seminal topics not included in the earlier book. These new topics include retinal feature detection; cortical connectomics; new approaches to mid-level vision and spatiotemporal perception; the latest understanding of how multimodal integration contributes to visual perception; new theoretical work on the role of neural oscillations in information processing; and new molecular and genetic techniques for understanding visual system development. An entirely new section covers invertebrate vision, reflecting the importance of this research in understanding fundamental principles of visual processing. Another new section treats translational visual neuroscience, covering recent progress in novel treatment modalities for optic nerve disorders, macular degeneration, and retinal cell replacement. The New Visual Neurosciences is an indispensable reference for students, teachers, researchers, clinicians, and anyone interested in contemporary neuroscience. Associate Editors Marie Burns, Joy Geng, Mark Goldman, James Handa, Andrew Ishida, George R. Mangun, Kimberley McAllister, Bruno Olshausen, Gregg Recanzone, Mandyam Srinivasan, W.Martin Usrey, Michael Webster, David Whitney Sections Retinal Mechanisms and Processes Organization of Visual Pathways Subcortical Processing Processing in Primary Visual Cortex Brightness and Color Pattern, Surface, and Shape Objects and Scenes Time, Motion, and Depth Eye Movements Cortical Mechanisms of Attention, Cognition, and Multimodal Integration Invertebrate Vision Theoretical Perspectives Molecular and Developmental Processes Translational Visual Neuroscience