Over the past few decades, there has been numerous research studies conducted involving the synchronization of dynamical systems with several theoretical studies and laboratory experimentations demonstrating the pivotal role for this phenomenon in secure communications. Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption explores the combination of ordinary and time delayed systems and their applications in cryptographic encoding. This innovative publication presents a critical mass of the most sought after research, providing relevant theoretical frameworks and the latest empirical research findings in this area of study.
Since the early 1990s, when synchronization of chaotic communication systems became a popular research subject, a vast number of scientific papers have been published. However, most of today’s books on chaotic communication systems deal exclusively with the systems where perfect synchronization is assumed, an assumption which separates theoretical from practical, real world, systems. This book is the first of its kind dealing exclusively with the synchronization techniques for chaotic communication systems. It describes a number of novel robust synchronization techniques, which there is a lack of, for single and multi-user chaotic communication systems published and highly cited in world’s leading journals in the area. In particular, it presents a solution to the problem of robust chaotic synchronization by presenting the first fully synchronized, highly secure, chaos based DS-CDMA system. The book fills a gap in the existing literature where a number of books exist that deal with chaos and chaotic communications but not with synchronization of chaotic communication systems. It also acts as a bridge between communication system theory and chaotic synchronization by carefully explaining the two concepts and demonstrating how they link into chaotic communication systems. The book also presents a detailed literature review on the topic of synchronization of chaotic communication systems. Furthermore, it presents the literature review on the general topic of chaotic synchronization and how those ideas led to the application of chaotic signals to secure chaotic communication systems. It therefore, in addition to presenting the state of the art systems, also presents a detailed history of chaotic communication systems. In summary, the book stands out in the field of synchronization techniques for chaotic communication systems.
The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.
This pages include the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, our concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behavior and what synchronization phen- ena can be found under feedback interconnection. Our findings have caused surprise to us and have stimulated our astonishing capability. Perhaps, reader can imagine our faces with opens eyes like children seeing around objects; which are possibly obvious for others and novel for us. A compilation of our surprises about these findings is being described along this book. Book contains both objectives to share our ama- ment and to show our perspective on synchronization of chaotic systems. Thus, while we were writing the preface, we discussed its scope. Thinking as a book readers, we found that a preface should answer, in few words, the following question: What can the reader find in this book?, reader can find our steps toward understanding of c- otic behavior and the possibility of suppressing and synchronizing it. We firstly show the chaos suppression form experimental domain to potential implementation in high tech system as a levitation system based on High Temperature Superconductors (HTS). This chapter is used as departing point towards a more complicated problem the chaotic synchronization. Then, reader travels by the synchronization of the chaotic behavior world throughout distinct feedback approaches.
This book presents a collection of major developments in chaos systems covering aspects on chaotic behavioral modeling and simulation, control and synchronization of chaos systems, and applications like secure communications. It is a good source to acquire recent knowledge and ideas for future research on chaos systems and to develop experiments applied to real life problems. That way, this book is very interesting for students, academia and industry since the collected chapters provide a rich cocktail while balancing theory and applications.
The Industrial Electronics Handbook, Second Edition, Industrial Communications Systems combines traditional and newer, more specialized knowledge that helps industrial electronics engineers develop practical solutions for the design and implementation of high-power applications. Embracing the broad technological scope of the field, this collection explores fundamental areas, including analog and digital circuits, electronics, electromagnetic machines, signal processing, and industrial control and communications systems. It also facilitates the use of intelligent systems—such as neural networks, fuzzy systems, and evolutionary methods—in terms of a hierarchical structure that makes factory control and supervision more efficient by addressing the needs of all production components. Enhancing its value, this fully updated collection presents research and global trends as published in the IEEE Transactions on Industrial Electronics Journal, one of the largest and most respected publications in the field. Modern communication systems in factories use many different—and increasingly sophisticated—systems to send and receive information. Industrial Communication Systems spans the full gamut of concepts that engineers require to maintain a well-designed, reliable communications system that can ensure successful operation of any production process. Delving into the subject, this volume covers: Technical principles Application-specific areas Technologies Internet programming Outlook, including trends and expected challenges Other volumes in the set: Fundamentals of Industrial Electronics Power Electronics and Motor Drives Control and Mechatronics Intelligent Systems
This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.