The Steiner Tree Problem

The Steiner Tree Problem

Author: F.K. Hwang

Publisher: Elsevier

Published: 1992-10-20

Total Pages: 353

ISBN-13: 0080867936

DOWNLOAD EBOOK

The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues.This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging.The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole.


Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics

Author: Teofilo F. Gonzalez

Publisher: CRC Press

Published: 2007-05-15

Total Pages: 1434

ISBN-13: 1420010743

DOWNLOAD EBOOK

Delineating the tremendous growth in this area, the Handbook of Approximation Algorithms and Metaheuristics covers fundamental, theoretical topics as well as advanced, practical applications. It is the first book to comprehensively study both approximation algorithms and metaheuristics. Starting with basic approaches, the handbook presents the methodologies to design and analyze efficient approximation algorithms for a large class of problems, and to establish inapproximability results for another class of problems. It also discusses local search, neural networks, and metaheuristics, as well as multiobjective problems, sensitivity analysis, and stability. After laying this foundation, the book applies the methodologies to classical problems in combinatorial optimization, computational geometry, and graph problems. In addition, it explores large-scale and emerging applications in networks, bioinformatics, VLSI, game theory, and data analysis. Undoubtedly sparking further developments in the field, this handbook provides the essential techniques to apply approximation algorithms and metaheuristics to a wide range of problems in computer science, operations research, computer engineering, and economics. Armed with this information, researchers can design and analyze efficient algorithms to generate near-optimal solutions for a wide range of computational intractable problems.


Steiner Tree Problems in Computer Communication Networks

Steiner Tree Problems in Computer Communication Networks

Author: Dingzhu Du

Publisher: World Scientific

Published: 2008-01-01

Total Pages: 373

ISBN-13: 9812791450

DOWNLOAD EBOOK

The Steiner tree problem is one of the most important combinatorial optimization problems. It has a long history that can be traced back to the famous mathematician Fermat (1601-1665). This book studies three significant breakthroughs on the Steiner tree problem that were achieved in the 1990s, and some important applications of Steiner tree problems in computer communication networks researched in the past fifteen years. It not only covers some of the most recent developments in Steiner tree problems, but also discusses various combinatorial optimization methods, thus providing a balance between theory and practice. Sample Chapter(s). Chapter 1: Minimax Approach and Steiner Ratio (372 KB). Contents: Minimax Approach and Steiner Ratio; k -Steiner Ratios and Better Approximation Algorithms; Geometric Partitions and Polynomial Time Approximation Schemes; Grade of Service Steiner Tree Problem; Steiner Tree Problem for Minimal Steiner Points; Bottleneck Steiner Tree Problem; Steiner k -Tree and k -Path Routing Problems; Steiner Tree Coloring Problem; Steiner Tree Scheduling Problem; Survivable Steiner Network Problem. Readership: Researchers and graduate students of computer science and engineering as well as operations research.


Handbook of Combinatorial Optimization

Handbook of Combinatorial Optimization

Author: Ding-Zhu Du

Publisher: Springer Science & Business Media

Published: 2006-08-18

Total Pages: 395

ISBN-13: 0387238301

DOWNLOAD EBOOK

This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.


Computing in Euclidean Geometry

Computing in Euclidean Geometry

Author: Dingzhu Du

Publisher: World Scientific

Published: 1992

Total Pages: 414

ISBN-13: 9789810209667

DOWNLOAD EBOOK

This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. The topics covered are: a history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra; triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and steiner trees. Each chapter is written by a leading expert in the field and together they provide a clear and authoritative picture of what computational Euclidean geometry is and the direction in which research is going.


Computing in Euclidean Geometry

Computing in Euclidean Geometry

Author: Ding-Zhu Du

Publisher: World Scientific

Published: 1995

Total Pages: 520

ISBN-13: 9789810218768

DOWNLOAD EBOOK

This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.


Encyclopedia of Optimization

Encyclopedia of Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2008-09-04

Total Pages: 4646

ISBN-13: 0387747583

DOWNLOAD EBOOK

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".


Recent Advances in Optimization

Recent Advances in Optimization

Author: Peter Gritzmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 388

ISBN-13: 364259073X

DOWNLOAD EBOOK

This book presents recent theoretical and practical aspects in the field of optimization and convex analysis. The topics covered in this volume include: - Equilibrium models in economics. - Control theory and semi-infinite programming. - Ill-posed variational problems. - Global optimization. - Variational methods in image restoration. - Nonsmooth optimization. - Duality theory in convex and nonconvex optimization. - Methods for large scale problems.


Handbook of Global Optimization

Handbook of Global Optimization

Author: R. Horst

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 891

ISBN-13: 1461520258

DOWNLOAD EBOOK

Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.


Optimal Interconnection Trees in the Plane

Optimal Interconnection Trees in the Plane

Author: Marcus Brazil

Publisher: Springer

Published: 2015-04-13

Total Pages: 359

ISBN-13: 3319139150

DOWNLOAD EBOOK

This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions. Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees. The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.