A Signal Processing Perspective on Financial Engineering

A Signal Processing Perspective on Financial Engineering

Author: Yiyong Feng

Publisher:

Published: 2016

Total Pages: 231

ISBN-13: 9781680831191

DOWNLOAD EBOOK

Financial engineering and electrical engineering are seemingly different areas that share strong underlying connections. Both areas rely on statistical analysis and modeling of systems; either modeling the financial markets or modeling wireless communication channels. Having a model of reality allows us to make predictions and to optimize the strategies. It is as important to optimize our investment strategies in a financial market as it is to optimize the signal transmitted by an antenna in a wireless link. This monograph provides a survey of financial engineering from a signal processing perspective, that is, it reviews financial modeling, the design of quantitative investment strategies, and order execution with comparison to seemingly different problems in signal processing and communication systems, such as signal modeling, filter/beamforming design, network scheduling, and power allocation.


A Signal Processing Perspective of Financial Engineering

A Signal Processing Perspective of Financial Engineering

Author: Yiyong Feng

Publisher: Now Publishers

Published: 2016-08-09

Total Pages: 256

ISBN-13: 9781680831184

DOWNLOAD EBOOK

A Signal Processing Perspective of Financial Engineering provides straightforward and systematic access to financial engineering for researchers in signal processing and communications


Financial Signal Processing and Machine Learning

Financial Signal Processing and Machine Learning

Author: Ali N. Akansu

Publisher: John Wiley & Sons

Published: 2016-04-21

Total Pages: 312

ISBN-13: 1118745639

DOWNLOAD EBOOK

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.


A Primer for Financial Engineering

A Primer for Financial Engineering

Author: Ali N. Akansu

Publisher: Academic Press

Published: 2015-03-25

Total Pages: 156

ISBN-13: 0128017503

DOWNLOAD EBOOK

This book bridges the fields of finance, mathematical finance and engineering, and is suitable for engineers and computer scientists who are looking to apply engineering principles to financial markets. The book builds from the fundamentals, with the help of simple examples, clearly explaining the concepts to the level needed by an engineer, while showing their practical significance. Topics covered include an in depth examination of market microstructure and trading, a detailed explanation of High Frequency Trading and the 2010 Flash Crash, risk analysis and management, popular trading strategies and their characteristics, and High Performance DSP and Financial Computing. The book has many examples to explain financial concepts, and the presentation is enhanced with the visual representation of relevant market data. It provides relevant MATLAB codes for readers to further their study. Please visit the companion website on http://booksite.elsevier.com/9780128015612/ - Provides engineering perspective to financial problems - In depth coverage of market microstructure - Detailed explanation of High Frequency Trading and 2010 Flash Crash - Explores risk analysis and management - Covers high performance DSP & financial computing


Foundations of Signal Processing

Foundations of Signal Processing

Author: Martin Vetterli

Publisher: Cambridge University Press

Published: 2014-09-04

Total Pages: 745

ISBN-13: 1139916572

DOWNLOAD EBOOK

This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localization, the limitations of uncertainty, and computational costs. It includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.


Convex Optimization for Signal Processing and Communications

Convex Optimization for Signal Processing and Communications

Author: Chong-Yung Chi

Publisher: CRC Press

Published: 2017-01-24

Total Pages: 294

ISBN-13: 1315349809

DOWNLOAD EBOOK

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.


Introduction to Applied Statistical Signal Analysis

Introduction to Applied Statistical Signal Analysis

Author: Richard Shiavi

Publisher: Elsevier

Published: 2010-07-19

Total Pages: 424

ISBN-13: 0080467687

DOWNLOAD EBOOK

Introduction to Applied Statistical Signal Analysis, Third Edition, is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech. Topics presented include mathematical bases, requirements for estimation, and detailed quantitative examples for implementing techniques for classical signal analysis. This book includes over one hundred worked problems and real world applications. Many of the examples and exercises use measured signals, most of which are from the biomedical domain. The presentation style is designed for the upper level undergraduate or graduate student who needs a theoretical introduction to the basic principles of statistical modeling and the knowledge to implement them practically. Includes over one hundred worked problems and real world applications. Many of the examples and exercises in the book use measured signals, many from the biomedical domain.


Digital Signal Processing

Digital Signal Processing

Author: John Leis

Publisher: Research Studies Press Limited

Published: 2002

Total Pages: 0

ISBN-13: 9780863802768

DOWNLOAD EBOOK

This text covers signal processing from an applications perspective. The theory is presented with examples from image and audio signal processing. The algorithms developed are presented using MATLAB in order to allow the reader to experiment with what-if? scenarios. The book also provides a gateway to the numerous signal processing resources on the World Wide Web, and provides pointers on where to begin using real-world signals to experiment with.


Probability, Random Processes, and Statistical Analysis

Probability, Random Processes, and Statistical Analysis

Author: Hisashi Kobayashi

Publisher: Cambridge University Press

Published: 2011-12-15

Total Pages: 813

ISBN-13: 1139502611

DOWNLOAD EBOOK

Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.


Financial Signal Processing and Machine Learning

Financial Signal Processing and Machine Learning

Author: Ali N. Akansu

Publisher: John Wiley & Sons

Published: 2016-05-31

Total Pages: 324

ISBN-13: 1118745671

DOWNLOAD EBOOK

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.