A Practical Guide to Data Analysis for Physical Science Students

A Practical Guide to Data Analysis for Physical Science Students

Author: Louis Lyons

Publisher: Cambridge University Press

Published: 1991-11-29

Total Pages: 116

ISBN-13: 9780521424639

DOWNLOAD EBOOK

It is usually straightforward to calculate the result of a practical experiment in the laboratory. Estimating the accuracy of that result is often regarded by students as an obscure and tedious routine, involving much arithmetic. An estimate of the error is, however, an integral part of the presentation of the results of experiments. This textbook is intended for undergraduates who are carrying out laboratory experiments in the physical sciences for the first time. It is a practical guide on how to analyse data and estimate errors. The necessary formulas for performing calculations are given, and the ideas behind them are explained, although this is not a formal text on statistics. Specific examples are worked through step by step in the text. Emphasis is placed on the need to think about whether a calculated error is sensible. At first students should take this book with them to the laboratory, and the format is intended to make this convenient. The book will provide the necessary understanding of what is involved, should inspire confidence in the method of estimating errors, and enable numerical calculations without too much effort. The author's aim is to make practical classes more enjoyable. Students who use this book will be able to complete their calculations quickly and confidently, leaving time to appreciate the basic physical ideas involved in the experiments.


Data Analysis in High Energy Physics

Data Analysis in High Energy Physics

Author: Olaf Behnke

Publisher: John Wiley & Sons

Published: 2013-08-30

Total Pages: 452

ISBN-13: 3527653430

DOWNLOAD EBOOK

This practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector effects, determining systematics and many others. Concrete applications are discussed in analysis walkthroughs. Each chapter is supplemented by numerous examples and exercises and by a list of literature and relevant links. The book targets a broad readership at all career levels - from students to senior researchers. An accompanying website provides more algorithms as well as up-to-date information and links. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/


Data Reduction and Error Analysis for the Physical Sciences

Data Reduction and Error Analysis for the Physical Sciences

Author: Philip R. Bevington

Publisher: McGraw-Hill Science, Engineering & Mathematics

Published: 1992

Total Pages: 362

ISBN-13:

DOWNLOAD EBOOK

This book is designed as a laboratory companion, student textbook or reference book for professional scientists. The text is for use in one-term numerical analysis, data and error analysis, or computer methods courses, or for laboratory use. It is for the sophomore-junior level, and calculus is a prerequisite. The new edition includes applications for PC use.


Eddy Covariance

Eddy Covariance

Author: Marc Aubinet

Publisher: Springer Science & Business Media

Published: 2012-01-18

Total Pages: 451

ISBN-13: 9400723504

DOWNLOAD EBOOK

This highly practical handbook is an exhaustive treatment of eddy covariance measurement that will be of keen interest to scientists who are not necessarily specialists in micrometeorology. The chapters cover measuring fluxes using eddy covariance technique, from the tower installation and system dimensioning to data collection, correction and analysis. With a state-of-the-art perspective, the authors examine the latest techniques and address the most up-to-date methods for data processing and quality control. The chapters provide answers to data treatment problems including data filtering, footprint analysis, data gap filling, uncertainty evaluation, and flux separation, among others. The authors cover the application of measurement techniques in different ecosystems such as forest, crops, grassland, wetland, lakes and rivers, and urban areas, highlighting peculiarities, specific practices and methods to be considered. The book also covers what to do when you have all your data, summarizing the objectives of a database as well as using case studies of the CarboEurope and FLUXNET databases to demonstrate the way they should be maintained and managed. Policies for data use, exchange and publication are also discussed and proposed. This one compendium is a valuable source of information on eddy covariance measurement that allows readers to make rational and relevant choices in positioning, dimensioning, installing and maintaining an eddy covariance site; collecting, treating, correcting and analyzing eddy covariance data; and scaling up eddy flux measurements to annual scale and evaluating their uncertainty.


Practical Data Analysis in Chemistry

Practical Data Analysis in Chemistry

Author: Marcel Maeder

Publisher: Elsevier

Published: 2007-08-10

Total Pages: 341

ISBN-13: 0080548830

DOWNLOAD EBOOK

The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spreadsheet, enabling the reader to study the programs, play with them and observe what happens. Suitable data are generated for each example in short routines, this ensuring a clear understanding of the data structure. Chapter 2 includes a brief introduction to matrix algebra and its implementation in Matlab and Excel while Chapter 3 covers the theory required for the modelling of chemical processes. This is followed by an introduction to linear and non-linear least-squares fitting, each demonstrated with typical applications. Finally Chapter 5 comprises a collection of several methods for model-free data analyses.* Includes a solid introduction to the simulation of equilibrium processes and the simulation of complex kinetic processes.* Provides examples of routines that are easily adapted to the processes investigated by the reader* 'Model-based' analysis (linear and non-linear regression) and 'model-free' analysis are covered


Applied Longitudinal Data Analysis for Epidemiology

Applied Longitudinal Data Analysis for Epidemiology

Author: Jos W. R. Twisk

Publisher: Cambridge University Press

Published: 2013-05-09

Total Pages: 337

ISBN-13: 110703003X

DOWNLOAD EBOOK

A practical guide to the most important techniques available for longitudinal data analysis, essential for non-statisticians and researchers.


A Practical Guide to Scientific Data Analysis

A Practical Guide to Scientific Data Analysis

Author: David J. Livingstone

Publisher: John Wiley & Sons

Published: 2009-12-10

Total Pages: 358

ISBN-13: 047068481X

DOWNLOAD EBOOK

Inspired by the author's need for practical guidance in the processes of data analysis, A Practical Guide to Scientific Data Analysis has been written as a statistical companion for the working scientist. This handbook of data analysis with worked examples focuses on the application of mathematical and statistical techniques and the interpretation of their results. Covering the most common statistical methods for examining and exploring relationships in data, the text includes extensive examples from a variety of scientific disciplines. The chapters are organised logically, from planning an experiment, through examining and displaying the data, to constructing quantitative models. Each chapter is intended to stand alone so that casual users can refer to the section that is most appropriate to their problem. Written by a highly qualified and internationally respected author this text: Presents statistics for the non-statistician Explains a variety of methods to extract information from data Describes the application of statistical methods to the design of “performance chemicals” Emphasises the application of statistical techniques and the interpretation of their results Of practical use to chemists, biochemists, pharmacists, biologists and researchers from many other scientific disciplines in both industry and academia.


Practical Data Analysis Cookbook

Practical Data Analysis Cookbook

Author: Tomasz Drabas

Publisher: Packt Publishing Ltd

Published: 2016-04-29

Total Pages: 384

ISBN-13: 1783558512

DOWNLOAD EBOOK

Over 60 practical recipes on data exploration and analysis About This Book Clean dirty data, extract accurate information, and explore the relationships between variables Forecast the output of an electric plant and the water flow of American rivers using pandas, NumPy, Statsmodels, and scikit-learn Find and extract the most important features from your dataset using the most efficient Python libraries Who This Book Is For If you are a beginner or intermediate-level professional who is looking to solve your day-to-day, analytical problems with Python, this book is for you. Even with no prior programming and data analytics experience, you will be able to finish each recipe and learn while doing so. What You Will Learn Read, clean, transform, and store your data usng Pandas and OpenRefine Understand your data and explore the relationships between variables using Pandas and D3.js Explore a variety of techniques to classify and cluster outbound marketing campaign calls data of a bank using Pandas, mlpy, NumPy, and Statsmodels Reduce the dimensionality of your dataset and extract the most important features with pandas, NumPy, and mlpy Predict the output of a power plant with regression models and forecast water flow of American rivers with time series methods using pandas, NumPy, Statsmodels, and scikit-learn Explore social interactions and identify fraudulent activities with graph theory concepts using NetworkX and Gephi Scrape Internet web pages using urlib and BeautifulSoup and get to know natural language processing techniques to classify movies ratings using NLTK Study simulation techniques in an example of a gas station with agent-based modeling In Detail Data analysis is the process of systematically applying statistical and logical techniques to describe and illustrate, condense and recap, and evaluate data. Its importance has been most visible in the sector of information and communication technologies. It is an employee asset in almost all economy sectors. This book provides a rich set of independent recipes that dive into the world of data analytics and modeling using a variety of approaches, tools, and algorithms. You will learn the basics of data handling and modeling, and will build your skills gradually toward more advanced topics such as simulations, raw text processing, social interactions analysis, and more. First, you will learn some easy-to-follow practical techniques on how to read, write, clean, reformat, explore, and understand your data—arguably the most time-consuming (and the most important) tasks for any data scientist. In the second section, different independent recipes delve into intermediate topics such as classification, clustering, predicting, and more. With the help of these easy-to-follow recipes, you will also learn techniques that can easily be expanded to solve other real-life problems such as building recommendation engines or predictive models. In the third section, you will explore more advanced topics: from the field of graph theory through natural language processing, discrete choice modeling to simulations. You will also get to expand your knowledge on identifying fraud origin with the help of a graph, scrape Internet websites, and classify movies based on their reviews. By the end of this book, you will be able to efficiently use the vast array of tools that the Python environment has to offer. Style and approach This hands-on recipe guide is divided into three sections that tackle and overcome real-world data modeling problems faced by data analysts/scientist in their everyday work. Each independent recipe is written in an easy-to-follow and step-by-step fashion.


Practical Statistics for Data Scientists

Practical Statistics for Data Scientists

Author: Peter Bruce

Publisher: "O'Reilly Media, Inc."

Published: 2017-05-10

Total Pages: 322

ISBN-13: 1491952911

DOWNLOAD EBOOK

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data


Data Analysis Methods in Physical Oceanography

Data Analysis Methods in Physical Oceanography

Author: Richard E. Thomson

Publisher: Elsevier

Published: 2001-04-03

Total Pages: 654

ISBN-13: 0080477003

DOWNLOAD EBOOK

Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999