Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
A guide to the various models and methods to multicriteria decision-making in conditions of uncertainty presented in a systematic approach Multicriteria Decision-Making under Conditions of Uncertainty presents approaches that help to answer the fundamental questions at the center of all decision-making problems: "What to do?" and "How to do it?" The book explores methods of representing and handling diverse manifestations of the uncertainty factor and a multicriteria nature of problems that can arise in system design, planning, operation, and control. The authors—noted experts on the topic—and their book covers essential questions, including notions and fundamental concepts of fuzzy sets, models and methods of multiobjective as well as multiattribute decision-making, the classical approach to dealing with uncertainty of information and its generalization for analyzing multicriteria problems in condition of uncertainty, and more. This comprehensive book contains information on "harmonious solutions" in multiobjective problem-solving (analyzing “i>X, F> models), construction and analysis of “i>X, R/i” models, results aimed at generating robust solutions in analyzing multicriteria problems under uncertainty, and more. In addition, the book includes illustrative examples of various applications, including real-world case studies related to the authors’ various industrial projects. This important resource: Explains the design and processing aspect of fuzzy sets, including construction of membership functions, fuzzy numbers, fuzzy relations, aggregation operations, and fuzzy sets transformations Describes models of multiobjective decision-making (“i>X. M/i” models), their analysis on the basis of using the Bellman-Zadeh approach to decision-making in a fuzzy environment, and their diverse applications, including multicriteria allocation of resources Investigates models of multiattribute decision-making (“i>X, R/i” models) and their analysis on the basis of the construction and processing of fuzzy preference relations as well as demonstrating their applications to solve diverse classes of multiattribute problems Explores notions of payoff matrices and fuzzy-set-based generalization and modification of the classic approach to decision-making under conditions of uncertainty to generate robust solutions in analyzing multicriteria problems Written for students, researchers and practitioners in disciplines in which decision-making is of paramount relevance, Multicriteria Decision-Making under Conditions of Uncertainty presents a systematic and current approach that encompasses a range of models and methods as well as new applications.
Fuzzy Multicriteria Decision-Making: Models, Algorithms and Applications addresses theoretical and practical gaps in considering uncertainty and multicriteria factors encountered in the design, planning, and control of complex systems. Including all prerequisite knowledge and augmenting some parts with a step-by-step explanation of more advanced concepts, the authors provide a systematic and comprehensive presentation of the concepts, design methodology, and detailed algorithms. These are supported by many numeric illustrations and a number of application scenarios to motivate the reader and make some abstract concepts more tangible. Fuzzy Multicriteria Decision-Making: Models, Algorithms and Applications will appeal to a wide audience of researchers and practitioners in disciplines where decision-making is paramount, including various branches of engineering, operations research, economics and management; it will also be of interest to graduate students and senior undergraduate students in courses such as decision making, management, risk management, operations research, numerical methods, and knowledge-based systems.
This proceedings volume contains a selection of papers presented at the Fourth International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 2-6, 2009. The conference was organized by the Hanoi Institute of Mathematics, the Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, mechanics, biology and medicine, engineering, hydrology problems, transport, communication networks, production scheduling, industrial and commercial problems.
This Handbook presents a comprehensive and rigorous overview of the state-of-the-art on Smart Cities. It provides the reader with an authoritative, exhaustive one-stop reference on how the field has evolved and where the current and future challenges lie. From the foundations to the many overlapping dimensions (human, energy, technology, data, institutions, ethics etc.), each chapter is written by international experts and amply illustrated with figures and tables with an emphasis on current research. The Handbook is an invaluable desk reference for researchers in a wide variety of fields, not only smart cities specialists but also by scientists and policy-makers in related disciplines that are deeply influenced by the emergence of intelligent cities. It should also serve as a key resource for graduate students and young researchers entering the area, and for instructors who teach courses on these subjects. The handbook is also of interest to industry and business innovators.
The two-volume set LNAI 11288 and 11289 constitutes the proceedings of the 17th Mexican International Conference on Artificial Intelligence, MICAI 2018, held in Guadalajara, Mexico, in October 2018. The total of 62 papers presented in these two volumes was carefully reviewed and selected from 149 submissions. The contributions are organized in topical as follows: Part I: evolutionary and nature-inspired intelligence; machine learning; fuzzy logic and uncertainty management. Part II: knowledge representation, reasoning, and optimization; natural language processing; and robotics and computer vision.