Two-Phase Flow

Two-Phase Flow

Author: Cl Kleinstreuer

Publisher: Routledge

Published: 2017-11-01

Total Pages: 472

ISBN-13: 1351406485

DOWNLOAD EBOOK

This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.


Mathematical Modeling of Disperse Two-Phase Flows

Mathematical Modeling of Disperse Two-Phase Flows

Author: Christophe Morel

Publisher: Springer

Published: 2015-07-17

Total Pages: 365

ISBN-13: 3319201042

DOWNLOAD EBOOK

This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, amongst others. This book is highly suitable for students in the subject area, but may also be a useful reference text for more advanced scientists and engineers.


Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows

Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows

Author: Lixing Zhou

Publisher: Butterworth-Heinemann

Published: 2018-01-25

Total Pages: 343

ISBN-13: 0128134666

DOWNLOAD EBOOK

Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. - Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory - Covers physical phenomena, numerical modeling theory and methods, and their applications - Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.


Modelling and Experimentation in Two-Phase Flow

Modelling and Experimentation in Two-Phase Flow

Author: Volfango Bertola

Publisher: Springer

Published: 2014-05-04

Total Pages: 433

ISBN-13: 3709125383

DOWNLOAD EBOOK

This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.


Two-phase Flow Modeling with Discrete Particles

Two-phase Flow Modeling with Discrete Particles

Author:

Publisher:

Published: 1992

Total Pages: 30

ISBN-13:

DOWNLOAD EBOOK

The design of efficient heat exchangers in which the working fluid changes phase requires accurate modeling of two-phase fluid flow. The local Navier-Stokes equations form the basic continuum equations for this flow situation. However, the local instantaneous model using these equations is intractable for afl but the simplest problems. AH the practical models for two-phase flow analysis are based on equations that have been averaged over control volumes. These models average out the detailed description within the control volumes and rely on flow regime maps to determine the distribution of the two phases within a control volume. Flow regime maps depend on steady state models and probably are not correct for dynamic models. Numerical simulations of the averaged two-phase flow models are usually performed using a two-fluid Eulerian description for the two phases. Eulerian descriptions have the advantage of having simple boundary conditions, but the disadvantage of introducing numerical diffusion, i.e., sharp interfaces are not maintained as the flow develops, but are diffused. Lagrangian descriptions have the advantage of being able to track sharp interfaces without diffusion, but they have the disadvantage of requiring more complicated boundary conditions. This paper describes a numerical scheme and attendant computer program, DISCON2, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between the intractable local instantaneous and the averaged two-fluid model. This new model uses a combination of an Eulerian and a Lagrangian representation of the two phases. The dispersed particles (bubbles or drops) are modeled individually using a large representative number of particles, each with their own Lagrangian description. The continuous phases (liquid or gas) use an Eulerian description.


Stochastic Lagrangian Modeling for Large Eddy Simulation of Dispersed Turbulent Two-Phase Flows

Stochastic Lagrangian Modeling for Large Eddy Simulation of Dispersed Turbulent Two-Phase Flows

Author: Abdallah Sofiane Berrouk

Publisher: Bentham Science Publishers

Published: 2011

Total Pages: 130

ISBN-13: 1608052966

DOWNLOAD EBOOK

Understanding the dispersion and the deposition of inertial particles convected by turbulent flows is a domain of research of considerable industrial interest. Inertial particle transport and dispersion are encountered in a wide range of flow configurations, whether they are of industrial or environmental character. Conventional models for turbulent dispersed flows do not appear capable of meeting the growing needs of chemical, mechanical and petroleum industries in this regard and physical environment testing is prohibitive. Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) ha.


Gasdynamic Aspects of Two-Phase Flow

Gasdynamic Aspects of Two-Phase Flow

Author: Herbert Staedtke

Publisher: John Wiley & Sons

Published: 2006-10-06

Total Pages: 302

ISBN-13: 9783527405787

DOWNLOAD EBOOK

Here, the author, a researcher of outstanding experience in this field, summarizes and combines the recent results and findings on advanced two-phase flow modeling and numerical methods otherwise dispersed in various journals, while also providing explanations for numerical and modeling techniques previously not covered by other books. The resulting systematic and comprehensive monograph is unrivalled in its kind, serving as a reference for both researchers and engineers working in engineering as well as in environmental science.


Multiphase Flows with Droplets and Particles

Multiphase Flows with Droplets and Particles

Author: Clayton T. Crowe

Publisher: CRC Press

Published: 2011-08-26

Total Pages: 509

ISBN-13: 1439840512

DOWNLOAD EBOOK

Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mecha


Advanced Computational Fluid Dynamics for Emerging Engineering Processes

Advanced Computational Fluid Dynamics for Emerging Engineering Processes

Author: Albert S. Kim

Publisher: BoD – Books on Demand

Published: 2019-12-11

Total Pages: 174

ISBN-13: 1789843723

DOWNLOAD EBOOK

As researchers deal with processes and phenomena that are geometrically complex and phenomenologically coupled the demand for high-performance computational fluid dynamics (CFD) increases continuously. The intrinsic nature of coupled irreversibility requires computational tools that can provide physically meaningful results within a reasonable time. This book collects the state-of-the-art CFD research activities and future R