A Numerical Library in C for Scientists and Engineers

A Numerical Library in C for Scientists and Engineers

Author: Hang T. Lau

Publisher: CRC Press

Published: 1994-11-23

Total Pages: 820

ISBN-13: 9781420050103

DOWNLOAD EBOOK

This extensive library of computer programs-written in C language-allows readers to solve numerical problems in areas of linear algebra, ordinary and partial differential equations, optimization, parameter estimation, and special functions of mathematical physics. The library is based on NUMAL, the program assemblage developed and used at the Centre for Mathematics and Computer Science in Amsterdam, one of the world's leading research centers. The important characteristic of the library is its modular structure. Because it is highly compact, it is well-suited for use on personal computers. The library offers the expert a prodigious collection of procedures for implementing numerical methods. The novice can experiment with the worked examples provided and use the more comprehensive procedures to perform mathematical computations. The library provides a powerful research tool for computer scientists, engineers, and applied mathematicians. Applicable materials can be downloaded from the CRC Press website.


A Numerical Library in Java for Scientists and Engineers

A Numerical Library in Java for Scientists and Engineers

Author: Hang T. Lau

Publisher: CRC Press

Published: 2003-08-27

Total Pages: 1088

ISBN-13: 1135437386

DOWNLOAD EBOOK

At last researchers have an inexpensive library of Java-based numeric procedures for use in scientific computation. The first and only book of its kind, A Numeric Library in Java for Scientists and Engineers is a translation into Java of the library NUMAL (NUMerical procedures in ALgol 60). This groundbreaking text presents procedural descriptions for linear algebra, ordinary and partial differential equations, optimization, parameter estimation, mathematical physics, and other tools that are indispensable to any dynamic research group. The book offers test programs that allow researchers to execute the examples provided; users are free to construct their own tests and apply the numeric procedures to them in order to observe a successful computation or simulate failure. The entry for each procedure is logically presented, with name, usage parameters, and Java code included. This handbook serves as a powerful research tool, enabling the performance of critical computations in Java. It stands as a cost-efficient alternative to expensive commercial software package of procedural components.


A Numerical Library in Java for Scientists and Engineers

A Numerical Library in Java for Scientists and Engineers

Author: Hang T. Lau

Publisher: CRC Press

Published: 2003-08-27

Total Pages: 1094

ISBN-13: 9781584884309

DOWNLOAD EBOOK

At last researchers have an inexpensive library of Java-based numeric procedures for use in scientific computation. The first and only book of its kind, A Numeric Library in Java for Scientists and Engineers is a translation into Java of the library NUMAL (NUMerical procedures in ALgol 60). This groundbreaking text presents procedural descriptions for linear algebra, ordinary and partial differential equations, optimization, parameter estimation, mathematical physics, and other tools that are indispensable to any dynamic research group. The book offers test programs that allow researchers to execute the examples provided; users are free to construct their own tests and apply the numeric procedures to them in order to observe a successful computation or simulate failure. The entry for each procedure is logically presented, with name, usage parameters, and Java code included. This handbook serves as a powerful research tool, enabling the performance of critical computations in Java. It stands as a cost-efficient alternative to expensive commercial software package of procedural components.


Numerical Methods in Engineering and Science

Numerical Methods in Engineering and Science

Author: B. S. Grewal

Publisher: Stylus Publishing, LLC

Published: 2018-07-19

Total Pages: 1180

ISBN-13: 1683921291

DOWNLOAD EBOOK

This book is intended as an introduction to numerical methods for scientists and engineers. Providing an excellent balance of theoretical and applied topics, it shows the numerical methods used with C, C++, and MATLAB. * Provides a balance of theoretical and applied topics * Shows the numerical methods used with C, C++, and MATLAB


Introduction to Numerical Programming

Introduction to Numerical Programming

Author: Titus A. Beu

Publisher: CRC Press

Published: 2014-09-03

Total Pages: 676

ISBN-13: 1466569670

DOWNLOAD EBOOK

Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.


C++ and Object-Oriented Numeric Computing for Scientists and Engineers

C++ and Object-Oriented Numeric Computing for Scientists and Engineers

Author: Daoqi Yang

Publisher: Springer Science & Business Media

Published: 2011-06-28

Total Pages: 452

ISBN-13: 1461301890

DOWNLOAD EBOOK

This book is an easy, concise but fairly complete introduction to ISO/ANSI C++ with special emphasis on object-oriented numeric computation. A user-defined numeric linear algebra library accompanies the book and can be downloaded from the web.


Guide to Scientific Computing in C++

Guide to Scientific Computing in C++

Author: Joe Pitt-Francis

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 257

ISBN-13: 1447127366

DOWNLOAD EBOOK

This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.


C Programming: The Essentials for Engineers and Scientists

C Programming: The Essentials for Engineers and Scientists

Author: David R. Brooks

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 490

ISBN-13: 146121484X

DOWNLOAD EBOOK

This text teaches the essentials of C programming, concentrating on what readers need to know in order to produce stand-alone programs and so solve typical scientific and engineering problems. It is a learning-by-doing book, with many examples and exercises, and lays a foundation of scientific programming concepts and techniques that will prove valuable for those who might eventually move on to another language. Written for undergraduates who are familiar with computers and typical applications but are new to programming.


Solving PDEs in C++

Solving PDEs in C++

Author: Yair Shapira

Publisher: SIAM

Published: 2012-06-07

Total Pages: 775

ISBN-13: 1611972167

DOWNLOAD EBOOK

In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.