A Novel Adapter Mechanism Regulates the Caulobacter Cell Cycle by Promoting the Degradation of the Transcriptional Regulator CtrA.

A Novel Adapter Mechanism Regulates the Caulobacter Cell Cycle by Promoting the Degradation of the Transcriptional Regulator CtrA.

Author: Stephen Carl Smith

Publisher:

Published: 2013

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

Caulobacter crescentus is a powerful model organism for understanding cellular differentiation, cell polarity and cell cycle regulation in bacteria. An elaborate network of two-component signaling proteins works to orchestrate the developmental program that characterizes the Caulobacter cell cycle. The essential DNA-binding response regulator CtrA is at the center of this regulatory scheme and acts to control the transcription of>100 genes that are required for cell cycle progression, motility, DNA methylation, morphology and other processes. Because CtrA also inhibits chromosome replication at specific stages of the Caulobacter cell cycle, its activity must be temporarily eliminated in order for DNA replication to occur. Inactivation of CtrA is achieved though dephosphorylation and regulated degradation by the broadly conserved energy-dependent protease ClpXP. In this dissertation, I analyze the roles of three proteins that are required for CtrA degradation in living cells. These are a single domain response regulator CpdR, a protein with no predicted function, RcdA, and a cyclic diguanylate (cdG)-binding protein, PopA. Structure-directed mutagenesis of RcdA was used to probe RcdA function. Results from these studies undermine the prevailing model for RcdA function, which suggest that RcdA does not participate directly in delivering CtrA to ClpXP, but instead acts simply as a localization factor increasing the concentration of CtrA at the cell pole where the protease is located. Additionally, I reconstituted the regulated proteolytic reaction in vitro and probed the role of all three accessory proteins and the small molecule cdG in promoting CtrA degradation. Although ClpXP alone is known to degrade CtrA in vitro, I observed a dramatic acceleration of proteolysis in the presence of the accessory proteins and cdG. This accelerated proteolysis was characterized by a nearly 10-fold reduction in the KM of the reaction, which is consistent with predictions for an adaptor mediated mechanism. I began to characterize protein-protein interactions within the proteolytic complex using in vivo and in vitro techniques. These experiments demonstrate that CtrA interacts directly with PopA in a cdG-dependent fashion. CtrA also interacts directly with RcdA and with ClpX. The CtrA-PopA(cdG) and CtrA-RcdA interactions are weakened or abolished by mutations in the receiver domain of CtrA that slow its proteolysis in vivo. We propose a mechanism in which CtrA forms a ternary complex with PopA and RcdA in response to rising cdG concentrations in the cell. In this complex, PopA and RcdA act as a multi-protein adaptor complex to enhance the delivery of CtrA to the catalytic pore of ClpX. CpdR is required for accelerated CtrA proteolysis, but its precise role is still unknown. The accessory proteins were able to stimulate CtrA degradation even in the presence of a DNA fragment containing a CtrA binding site, which is known to inhibit CtrA proteolysis. Future work will determine if the accessory factors prevent the formation of inhibitory CtrA-DNA complexes or actively disassemble them. This dissertation alters the concept of proteolytic adaptors to include multi-protein complexes and expands the range of mechanisms by which proteolytic adaptors are controlled to include direct regulation by the small molecule cdG.


Bacterial Transcription Factors and the Cell Cycle, 2nd edition

Bacterial Transcription Factors and the Cell Cycle, 2nd edition

Author: Morigen Morigen

Publisher: Frontiers Media SA

Published: 2022-10-10

Total Pages: 181

ISBN-13: 2889767671

DOWNLOAD EBOOK

Analogous to the eukaryotic G1, S and M phase of the cell cycle, the bacterial cell cycle can be classified into independent stages. Slowly growing bacterial cells undergo three different stages, B-, C- and D-phase, respectively, while the cell cycle of fast-growing bacteria involves at least two independent cycles: the chromosome replication and the cell division. The oscillation in gene expression regulated by transcription factors, and proteolysis mediated by ClpXP, are closely correlated with progression of the cell cycle. Indeed, it has been shown that DnaA couples DNA replication initiation with the expression of the two oscillating regulators GcrA and CtrA, and the DnaA/GcrA/CtrA regulatory cascade drives the forward progression of the Caulobacter cell cycle. Furthermore, it has been found that: the DnaA oscillation in Eschericha coli and Caulobacter crescentus plays an important role in the cell cycle coordination; RpoS in Coxiella regulates the gene expression involved in the developmental cycle; the SigB and SinR transcription factors control whether cells remain in or leave a biofilm responding to metabolic conditions in Bacillus subtilis; similarly, BolA in most Gram-negative bacteria turns off motility and turns on biofilm development as a transcription factor; CtrA regulates cell division and outer membrane composition of the pathogen Brucella abortus; an essential transcription factor SciP enhances robustness of Caulobacter cell cycle regulation. Interestingly, transcription factors mediated metabolism fluctuations are also related to progression of the cell cycle. It has been shown that: CggR and Cra factors are involved in the flux-signaling metabolite fructose-1,6-bisphosphate; IclR mediates para-hydroxybenzoate catabolism in Streptomyces coelicolor; CceR and AkgR regulate central carbon and energy metabolism in alphaproteobacteria; and these metabolism changes affect cell growth. In line with the argument, AspC-mediated aspartate metabolism coordinates the E. coli cell cycle. However, the molecular mechanisms of maintaining the proper cell cycle progression through coordination of transcription factors mediated gene transcription oscillation, cellular metabolism with the cell cycle are not yet well-established. This Research Topic is intended to cover the spectrum of cell cycle regulatory mechanisms, in particular the coordination of transcription factor mediated gene transcription oscillations, and the cellular metabolisms associated with the cell cycle. We welcome all types of articles including Original Research, Review, and Mini Review. The subject areas of interest include but are not limited to: 1. Cell cycle coordination through gene expression and expression oscillation mediated by transcription factors. 2. Regulation of the cell cycle by proteolysis oscillation. 3. Coordination of the cell cycle with metabolism fluctuation. 4. DNA methylation fluctuation and the cell cycle. 5. Novel transcription factors and gene expression patterns associated with the cell cycle.


Regulation of Cell Fate Asymmetry in Caulobacter Crescentus by a Complex of Two Component Signaling Proteins

Regulation of Cell Fate Asymmetry in Caulobacter Crescentus by a Complex of Two Component Signaling Proteins

Author: Christos G. Tsokos

Publisher:

Published: 2011

Total Pages: 127

ISBN-13:

DOWNLOAD EBOOK

Cellular asymmetry is critical to the generation of complexity in both metazoans and many microbes. However, several molecular mechanisms responsible for translating asymmetry into differential cell fates remain unknown. Caulobacter crescentus provides an excellent model to study this process because every division is asymmetric. One daughter cell, the stalked cell, is sessile and commits immediately to S phase. The other daughter, the swarmer cell, is motile and locked in G1. Cellular differentiation requires asymmetric distribution or activation of regulatory factors. In Caulobacter, the master cell cycle regulator CtrA is selectively activated in swarmer cells, deactivated in stalked cells, and reactivated in predivisional cells. CtrA controls DNA replication, polar morphogenesis and cell division, and its cell-type and cell cycle-specific regulation is essential to the life cycle of Caulobacter. In swarmer cells, activated CtrA binds to the origin of replication and holds cells in G1. In stalked cells, CtrA deactivation allows for the initiation of DNA replication. Finally, in predivisional cells, CtrA is reactivated and acts as a transcription factor for>100 genes including those involved in polar morphogenesis and cell division. CtrA regulation is determined by the polarly localized histidine kinase CckA, but how CckA is differentially regulated in each cell type and why activity depends on localization are unknown. This thesis demonstrates that the unorthodox kinase DivL promotes CckA activity and that the phosphorylated regulator DivK inhibits CckA by binding to DivL. Differential cellular fates are achieved by regulating the phosphorylation state of DivK. In swarmer cells, DivK is dephosphorylated, thereby activating CckA and arresting the cells in G1. In stalked cells, phosphorylated DivK inactivates CckA, thus allowing for DNA replication initiation. Paradoxically, in predivisional cells, while phosphorylated DivK levels remain high, CckA is reactivated to initiate cellular division and morphogenesis. CckA activation in this cell type relies on polar localization with a DivK phosphatase. Localization thus creates a protected zone for CckA within the cell, without the use of membrane-enclosed compartments. These results reveal the mechanisms by which CckA is regulated in a cell-type-dependent manner. More generally, these findings reveal how cells exploit subcellular localization to orchestrate sophisticated regulation.


Bacterial Physiology

Bacterial Physiology

Author: Walid El-Sharoud

Publisher: Springer Science & Business Media

Published: 2007-12-07

Total Pages: 377

ISBN-13: 3540749217

DOWNLOAD EBOOK

The application of new molecular methodologies in the study of bacterial behavior and cell architecture has enabled new revolutionary insights and discoveries in these areas. This new text presents recent developments in bacterial physiology that are highly relevant to a wide range of readership including those interested in basic and applied knowledge. Its chapters are written by international scientific authorities at the forefront of the subject. The value of this recent knowledge in bacterial physiology is not only restricted to fundamental biology. It also extends to biotechnology and drug-discovery disciplines.


Molecular Microbiology of Heavy Metals

Molecular Microbiology of Heavy Metals

Author: Dietrich H. Nies

Publisher: Springer Science & Business Media

Published: 2007-03-24

Total Pages: 455

ISBN-13: 3540697713

DOWNLOAD EBOOK

This book covers allocation of metals in cells, metal transporter, storage and metalloregulatory proteins, cellular responses to metal ion stress, transcription of genes involved in metal ion homeostasis, uptake of essential metals, metal efflux and other detoxification mechanisms. The book also discusses metal bioreporters for the nanomolar range of concentration and tools to address the metallome. In addition, coverage details specific metals.


Genome Mapping and Genomics in Animal-Associated Microbes

Genome Mapping and Genomics in Animal-Associated Microbes

Author: Vishvanath Nene

Publisher: Springer Science & Business Media

Published: 2008-11-24

Total Pages: 253

ISBN-13: 3540740422

DOWNLOAD EBOOK

Achievements and progress in genome mapping and the genomics of microbes supersede by far those for higher plants and animals, in part due to their enormous economic implication but also smaller genome size. In the post-genomic era, whole genome sequences of animal-associated microbes are providing clues to depicting the genetic basis of the complex host-pathogen relationships and the evolution of parasitism; and to improving methods of controlling pathogens. This volume focuses on a globally important group of intracellular prokaryotic pathogens which affect livestock animals. These include Brucella, Mycobacterium, Anaplasma and Ehrlichia, as well as the protozoan pathogens Cryptosporidium and Theileria, for which genome sequence data is available. Insights from comparative genomics of the microbes described provide clues to the adaptation involved in host-microbe interactions, as well as resources potentially useful for application in future research and product development.


Fundamentals of Bacterial Physiology and Metabolism

Fundamentals of Bacterial Physiology and Metabolism

Author: Rani Gupta

Publisher: Springer Nature

Published: 2021-04-20

Total Pages: 670

ISBN-13: 9811607230

DOWNLOAD EBOOK

This book provides useful information on microbial physiology and metabolism. The key aspects covered are prokaryotic diversity, growth physiology, basic metabolic pathways and their regulation, metabolic diversity with details of various unique pathways. Another focus area is stress physiology with details on varying environmental stresses, signal transduction, adaptation and survival. For instructional purposes, the book provides case studies, interesting facts, techniques etc. which help in showcasing the inter-disciplinary nature and bridge the gap between various aspects of applied microbiology.


Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Author: Frans J. de Bruijn

Publisher: John Wiley & Sons

Published: 2016-07-13

Total Pages: 1472

ISBN-13: 1119004896

DOWNLOAD EBOOK

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.


Pathogen Genomics

Pathogen Genomics

Author: Karen Joy Shaw

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 513

ISBN-13: 1592591728

DOWNLOAD EBOOK

Leading infectious disease researchers and pharmaceutical scientists comprehensively review the latest genomic technologies and their application to the prevention, diagnosis, and treatment. The authors' cross-disciplinary approach, with expertise acquired from studying disease-causing viruses, bacteria, fungi, and protozoa, reveals how sequence information from diverse pathogens has uncovered novel targets for drug discovery, antigenic determinants for vaccine development, as well as diagnostic tools. The authors also discuss the application of DNA micoarrays and the impact of genome sequencing comparisons on the discovery and choices of novel drug targets. The result is a better understanding how genomic information can reveal the fundamentals of microbial pathogenesis and how organisms interact with their host environment.