Nonlinear Finite Element Analysis of Solids and Structures

Nonlinear Finite Element Analysis of Solids and Structures

Author: René de Borst

Publisher: John Wiley & Sons

Published: 2012-07-25

Total Pages: 481

ISBN-13: 1118376013

DOWNLOAD EBOOK

Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist René de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature. Key features: Combines the two previous volumes into one heavily revised text with obsolete material removed, an improved layout and updated references and notations Extensive new material on more recent developments in computational mechanics Easily readable, engineering oriented, with no more details in the main text than necessary to understand the concepts. Pseudo-code throughout makes the link between theory and algorithms, and the actual implementation. Accompanied by a website (www.wiley.com/go/deborst) with a Python code, based on the pseudo-code within the book and suitable for solving small-size problems. Non-linear Finite Element Analysis of Solids and Structures, 2nd Edition is an essential reference for practising engineers and researchers that can also be used as a text for undergraduate and graduate students within computational mechanics.


Nonlinear Analysis of Structures (1997)

Nonlinear Analysis of Structures (1997)

Author: Muthukrishnan Sathyamoorthy

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 640

ISBN-13: 1351359827

DOWNLOAD EBOOK

Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation. Designed for both self-study and classroom instruction, Nonlinear Analysis of Structures is also an authoritative reference for practicing engineers and scientists. One of the world's leaders in the study of nonlinear structural analysis, Professor Sathyamoorthy has made significant research contributions to the field of nonlinear mechanics for twenty-seven years. His foremost contribution to date has been the development of a unique transverse shear deformation theory for plates undergoing large amplitude vibrations and the examination of multiple mode solutions for plates. In addition to his notable research, Professor Sathyamoorthy has also developed and taught courses in the field at universities in India, Canada, and the United States.


Advanced Design of Mechanical Systems: From Analysis to Optimization

Advanced Design of Mechanical Systems: From Analysis to Optimization

Author: Jorge A.C. Ambrosio

Publisher: Springer Science & Business Media

Published: 2009-11-25

Total Pages: 426

ISBN-13: 3211994610

DOWNLOAD EBOOK

Multibody systems are used extensively in the investigation of mechanical systems including structural and non-structural applications. It can be argued that among all the areas in solid mechanics the methodologies and applications associated to multibody dynamics are those that provide an ideal framework to aggregate d- ferent disciplines. This idea is clearly reflected, e. g. , in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, in finite elements where multibody dynamics provides - werful tools to describe large motion and kinematic restrictions between system components, in system control where the methodologies used in multibody dynamics are the prime form of describing the systems under analysis, or even in many - plications that involve fluid-structure interaction or aero elasticity. The development of industrial products or the development of analysis tools, using multibody dynamics methodologies, requires that the final result of the devel- ments are the best possible within some limitations, i. e. , they must be optimal. Furthermore, the performance of the developed systems must either be relatively insensitive to some of their design parameters or be sensitive in a controlled manner to other variables. Therefore, the sensitivity analysis of such systems is fundamental to support the decision making process. This book presents a broad range of tools for designing mechanical systems ranging from the kinematic and dynamic analysis of rigid and flexible multibody systems to their advanced optimization.


The Finite Element Method

The Finite Element Method

Author: Bofang Zhu

Publisher: John Wiley & Sons

Published: 2018-03-12

Total Pages: 873

ISBN-13: 1119107334

DOWNLOAD EBOOK

A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how the fundamentals of the FEM can be applied in other disciplines. Researchers and graduate students studying hydraulic, mechanical and civil engineering will find it a practical reference text.


Structural Engineering

Structural Engineering

Author: Adnan Ibrahimbegovic

Publisher: Springer Nature

Published: 2023-02-23

Total Pages: 542

ISBN-13: 3031235924

DOWNLOAD EBOOK

This book presents a novel approach to the classical scientific discipline of Structural Engineering, which is inspired by numerous current applications from domains of Civil, Mechanical or Aerospace Engineering. The main goal of this book is to help with making the best choice between accuracy and efficiency, when it comes to building the most suitable structural models by practising engineers using modern computational tools available in commercial software products (SAP, FEAP, ANSYS ...) for which we have carried out many developments that have been become the main reference in the field. Any development of this kind is not a mere modification of discrete approximation, but a thorough treatment with a sound theoretical formulation based upon Hu-Washizu variational principle with independent rotation field, its corresponding regularization and finally the most appropriate finite element interpolation that can match those used for structural elements. Proposed approach allows us to provide a unified discrete approximation of complex structural assemblies and greatly simplify the modeling task for structural engineers. Thus, in conclusion, this book can also be perceived as the theoretical manual for using modern computer models successfully by practising engineers.


Computational Continuum Mechanics

Computational Continuum Mechanics

Author: Ahmed A. Shabana

Publisher: John Wiley & Sons

Published: 2018-02-20

Total Pages: 364

ISBN-13: 1119293219

DOWNLOAD EBOOK

An updated and expanded edition of the popular guide to basic continuum mechanics and computational techniques This updated third edition of the popular reference covers state-of-the-art computational techniques for basic continuum mechanics modeling of both small and large deformations. Approaches to developing complex models are described in detail, and numerous examples are presented demonstrating how computational algorithms can be developed using basic continuum mechanics approaches. The integration of geometry and analysis for the study of the motion and behaviors of materials under varying conditions is an increasingly popular approach in continuum mechanics, and absolute nodal coordinate formulation (ANCF) is rapidly emerging as the best way to achieve that integration. At the same time, simulation software is undergoing significant changes which will lead to the seamless fusion of CAD, finite element, and multibody system computer codes in one computational environment. Computational Continuum Mechanics, Third Edition is the only book to provide in-depth coverage of the formulations required to achieve this integration. Provides detailed coverage of the absolute nodal coordinate formulation (ANCF), a popular new approach to the integration of geometry and analysis Provides detailed coverage of the floating frame of reference (FFR) formulation, a popular well-established approach for solving small deformation problems Supplies numerous examples of how complex models have been developed to solve an array of real-world problems Covers modeling of both small and large deformations in detail Demonstrates how to develop computational algorithms using basic continuum mechanics approaches Computational Continuum Mechanics, Third Edition is designed to function equally well as a text for advanced undergraduates and first-year graduate students and as a working reference for researchers, practicing engineers, and scientists working in computational mechanics, bio-mechanics, computational biology, multibody system dynamics, and other fields of science and engineering using the general continuum mechanics theory.


Marine Structural Design

Marine Structural Design

Author: Yong Bai

Publisher: Elsevier

Published: 2003-08-05

Total Pages: 628

ISBN-13: 0080535836

DOWNLOAD EBOOK

This new reference describes the applications of modern structural engineering to marine structures. It will provide an invaluable resource to practicing marine and offshore engineers working in oil and gas as well as those studying marine structural design. The coverage of fatigue and fracture criteria forms a basis for limit-state design and re-assessment of existing structures and assists with determining material and inspection requirements. Describing applications of risk assessment to marine and offshore industries, this is a practical and useful book to help engineers conduct structural design.*Presents modern structural design principles helping the engineer understand how to conduct structural design by analysis*Offers practical and usable theory for industrial applications of structural reliability theory