An era of sweeping cultural change in America, the postwar years saw the rise of beatniks and hippies, the birth of feminism, and the release of the first video game. This book examines the rise and fall of the new math as a marker of the period's political and social ferment.
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
An important mathematician and astronomer in medieval India, Bhascara Acharya (1114-85) wrote treatises on arithmetic, algebra, geometry and astronomy. He is also believed to have been head of the astronomical observatory at Ujjain, which was the leading centre of mathematical sciences in India. Forming part of his Sanskrit magnum opus Siddhānta Shiromani, the present work is his treatise on arithmetic, including coverage of geometry. It was first published in English in 1816 after being translated by the East India Company surgeon John Taylor (d.1821). Used as a textbook in India for centuries, it provides the basic mathematics needed for astronomy. Topics covered include arithmetical terms, plane geometry, solid geometry and indeterminate equations. Of enduring interest in the history of mathematics, this work also contains Bhascara's pictorial proof of Pythagoras' theorem.
Praised for its "exceptionally good value" by the Journal of Recreational Mathematics, this book offers fun-filled insights into many fields of mathematics. The brainteasers include original puzzles as well as new approaches to classic conundrums. A vast assortment of challenges features domino puzzles, the game of noughts and crosses, games of encirclement, sliding movement puzzles, subtraction games, puzzles in mechanics, games with piles of matches, a road puzzle with concentric circles, "Catch the Giant," and much more. Detailed solutions show several methods by which a particular problem may be answered, why one method is preferable, and where the others fail. With numerous worked examples, the clear, step-by-step analyses cover how the problem should be approached, including hints and enumeration of possibilities and determination of probabilities, application of the theory of probability, and evaluation of contingencies and mean values. Readers are certain to improve their puzzle-solving strategies as well as their mathematical skills.
In 1913, Russian imperial marines stormed an Orthodox monastery at Mt. Athos, Greece, to haul off monks engaged in a dangerously heretical practice known as Name Worshipping. Exiled to remote Russian outposts, the monks and their mystical movement went underground. Ultimately, they came across Russian intellectuals who embraced Name Worshipping—and who would achieve one of the biggest mathematical breakthroughs of the twentieth century, going beyond recent French achievements. Loren Graham and Jean-Michel Kantor take us on an exciting mathematical mystery tour as they unravel a bizarre tale of political struggles, psychological crises, sexual complexities, and ethical dilemmas. At the core of this book is the contest between French and Russian mathematicians who sought new answers to one of the oldest puzzles in math: the nature of infinity. The French school chased rationalist solutions. The Russian mathematicians, notably Dmitri Egorov and Nikolai Luzin—who founded the famous Moscow School of Mathematics—were inspired by mystical insights attained during Name Worshipping. Their religious practice appears to have opened to them visions into the infinite—and led to the founding of descriptive set theory. The men and women of the leading French and Russian mathematical schools are central characters in this absorbing tale that could not be told until now. Naming Infinity is a poignant human interest story that raises provocative questions about science and religion, intuition and creativity.
"The binomial theorem is usually quite rightly considered as one of the most important theorems in the whole of analysis." Thus wrote Bernard Bolzano in 1816 in introducing the first correct proof of Newton's generalisation of a century and a half earlier of a result familiar to us all from elementary algebra. Bolzano's appraisal may surprise the modern reader familiar only with the finite algebraic version of the Binomial Theorem involving positive integral exponents, and may also appear incongruous to one familiar with Newton's series for rational exponents. Yet his statement was a sound judgment back in the day. Here the story of the Binomial Theorem is presented in all its glory, from the early days in India, the Moslem world, and China as an essential tool for root extraction, through Newton's generalisation and its central role in infinite series expansions in the 17th and 18th centuries, and to its rigorous foundation in the 19th. The exposition is well-organised and fairly complete with all the necessary details, yet still readable and understandable for those with a limited mathematical background, say at the Calculus level or just below that. The present book, with its many citations from the literature, will be of interest to anyone concerned with the history or foundations of mathematics.
Richly detailed survey of the evolution of geometrical ideas and development of concepts of modern geometry: projective, Euclidean, and non-Euclidean geometry; role of geometry in Newtonian physics, calculus, relativity. Over 100 exercises with answers. 1966 edition.