This monograph presents a time-dynamic model for multivariate claim counts in actuarial applications. Inspired by real-world claim arrivals, the model balances interesting stylized facts (such as dependence across the components, over-dispersion and the clustering of claims) with a high level of mathematical tractability (including estimation, sampling and convergence results for large portfolios) and can thus be applied in various contexts (such as risk management and pricing of (re-)insurance contracts). The authors provide a detailed analysis of the proposed probabilistic model, discussing its relation to the existing literature, its statistical properties, different estimation strategies as well as possible applications and extensions. Actuaries and researchers working in risk management and premium pricing will find this book particularly interesting. Graduate-level probability theory, stochastic analysis and statistics are required.
The book develops the capabilities arising from the cooperation between mathematicians and statisticians working in insurance and finance fields. It gathers some of the papers presented at the conference MAF2010, held in Ravello (Amalfi coast), and successively, after a reviewing process, worked out to this aim.
Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into two parts: Computational Data Analysis, and Classification Data Analysis, with methods for both - providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.
The latest research on measuring, managing and pricing financial risk. Three broad perspectives are considered: financial risk in non-financial corporations; in financial intermediaries such as banks; and finally within the context of a portfolio of securities of different credit quality and marketability.
Financial modelling Theory, Implementation and Practice with MATLAB Source Jörg Kienitz and Daniel Wetterau Financial Modelling - Theory, Implementation and Practice with MATLAB Source is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options. The book is split into three parts. The first part considers financial markets in general and looks at the complex models needed to handle observed structures, reviewing models based on diffusions including stochastic-local volatility models and (pure) jump processes. It shows the possible risk-neutral densities, implied volatility surfaces, option pricing and typical paths for a variety of models including SABR, Heston, Bates, Bates-Hull-White, Displaced-Heston, or stochastic volatility versions of Variance Gamma, respectively Normal Inverse Gaussian models and finally, multi-dimensional models. The stochastic-local-volatility Libor market model with time-dependent parameters is considered and as an application how to price and risk-manage CMS spread products is demonstrated. The second part of the book deals with numerical methods which enables the reader to use the models of the first part for pricing and risk management, covering methods based on direct integration and Fourier transforms, and detailing the implementation of the COS, CONV, Carr-Madan method or Fourier-Space-Time Stepping. This is applied to pricing of European, Bermudan and exotic options as well as the calculation of the Greeks. The Monte Carlo simulation technique is outlined and bridge sampling is discussed in a Gaussian setting and for Lévy processes. Computation of Greeks is covered using likelihood ratio methods and adjoint techniques. A chapter on state-of-the-art optimization algorithms rounds up the toolkit for applying advanced mathematical models to financial problems and the last chapter in this section of the book also serves as an introduction to model risk. The third part is devoted to the usage of Matlab, introducing the software package by describing the basic functions applied for financial engineering. The programming is approached from an object-oriented perspective with examples to propose a framework for calibration, hedging and the adjoint method for calculating Greeks in a Libor market model. Source code used for producing the results and analysing the models is provided on the author's dedicated website, http://www.mathworks.de/matlabcentral/fileexchange/authors/246981.
This book features selected papers from the international conference MAF 2008 that cover a wide variety of subjects in actuarial, insurance and financial fields, all treated in light of the successful cooperation between mathematics and statistics.
This book is a collection of feature articles published in Risks in 2020. They were all written by experts in their respective fields. In these articles, they all develop and present new aspects and insights that can help us to understand and cope with the different and ever-changing aspects of risks. In some of the feature articles the probabilistic risk modeling is the central focus, whereas impact and innovation, in the context of financial economics and actuarial science, is somewhat retained and left for future research. In other articles it is the other way around. Ideas and perceptions in financial markets are the driving force of the research but they do not necessarily rely on innovation in the underlying risk models. Together, they are state-of-the-art, expert-led, up-to-date contributions, demonstrating what Risks is and what Risks has to offer: articles that focus on the central aspects of insurance and financial risk management, that detail progress and paths of further development in understanding and dealing with...risks. Asking the same type of questions (which risk allocation and mitigation should be provided, and why?) creates value from three different perspectives: the normative perspective of market regulator; the existential perspective of the financial institution; the phenomenological perspective of the individual consumer or policy holder.
Autoregressive Conditional Heteroskedastic (ARCH) processes are used in finance to model asset price volatility over time. This book introduces both the theory and applications of ARCH models and provides the basic theoretical and empirical background, before proceeding to more advanced issues and applications. The Authors provide coverage of the recent developments in ARCH modelling which can be implemented using econometric software, model construction, fitting and forecasting and model evaluation and selection. Key Features: Presents a comprehensive overview of both the theory and the practical applications of ARCH, an increasingly popular financial modelling technique. Assumes no prior knowledge of ARCH models; the basics such as model construction are introduced, before proceeding to more complex applications such as value-at-risk, option pricing and model evaluation. Uses empirical examples to demonstrate how the recent developments in ARCH can be implemented. Provides step-by-step instructive examples, using econometric software, such as Econometric Views and the G@RCH module for the Ox software package, used in Estimating and Forecasting ARCH Models. Accompanied by a CD-ROM containing links to the software as well as the datasets used in the examples. Aimed at readers wishing to gain an aptitude in the applications of financial econometric modelling with a focus on practical implementation, via applications to real data and via examples worked with econometrics packages.
Since a major source of income for many countries comes from exporting commodities, price discovery and information transmission between commodity futures markets are key issues for continued economic development. Commodities: Fundamental Theory of Futures, Forwards, and Derivatives Pricing, Second Edition covers the fundamental theory of and derivatives pricing for major commodity markets, as well as the interaction between commodity prices, the real economy, and other financial markets. After a thoroughly updated and extensive theoretical and practical introduction, this new edition of the book is divided into five parts – the fifth of which is entirely new material covering cutting-edge developments. Oil Products considers the structural changes in the demand and supply for hedging services that are increasingly determining the price of oil Other Commodities examines markets related to agricultural commodities, including natural gas, wine, soybeans, corn, gold, silver, copper, and other metals Commodity Prices and Financial Markets investigates the contemporary aspects of the financialization of commodities, including stocks, bonds, futures, currency markets, index products, and exchange traded funds Electricity Markets supplies an overview of the current and future modelling of electricity markets Contemporary Topics discuss rough volatility, order book trading, cryptocurrencies, text mining for price dynamics and flash crashes
This book presents 20 peer-reviewed chapters on current aspects of derivatives markets and derivative pricing. The contributions, written by leading researchers in the field as well as experienced authors from the financial industry, present the state of the art in: • Modeling counterparty credit risk: credit valuation adjustment, debit valuation adjustment, funding valuation adjustment, and wrong way risk. • Pricing and hedging in fixed-income markets and multi-curve interest-rate modeling. • Recent developments concerning contingent convertible bonds, the measuring of basis spreads, and the modeling of implied correlations. The recent financial crisis has cast tremendous doubts on the classical view on derivative pricing. Now, counterparty credit risk and liquidity issues are integral aspects of a prudent valuation procedure and the reference interest rates are represented by a multitude of curves according to their different periods and maturities. A panel discussion included in the book (featuring Damiano Brigo, Christian Fries, John Hull, and Daniel Sommer) on the foundations of modeling and pricing in the presence of counterparty credit risk provides intriguing insights on the debate.