Multi-valued neutrosophic sets (MVNSs) consider the truth-membership, indeterminacy-membership, and falsity-membership simultaneously, which can more accurately express the preference information of decision-makers. In this paper, the normalized multi-valued neutrosophic distance measure is developed firstly and the corresponding properties are investigated as well.
Multi-valued neutrosophic sets (MVNSs) have recently become a subject of great interest for researchers, and have been applied widely to multi-criteria decision-making (MCDM) problems.
Single-valued neutrosophic hesitant fuzzy sets (SVNHFSs) have recently become a subject of great interest for researchers, and have been applied widely to multi-criteria decision-making (MCDM) problems. In this paper, the singlevalued neutrosophic hesitant fuzzy geometric weighted Choquet integral Heronian mean operator, which is based on the Heronian mean and Choquet integral, is proposed, and some special cases and the corresponding properties of the operator are discussed. Moreover, based on the proposed operator, an MCDM approach for handling single-valued neutrosophic hesitant fuzzy information where the weights are unknown is investigated. Furthermore, an illustrative example to demonstrate the applicability of the proposed decision-making approach is provided, together with a sensitivity analysis and comparison analysis, which proves that its results are feasible and credible.
With respect to multi-criteria decision-making (MCDM) problems in which the criteria denote the form of single-valued neutrosophic sets (SVNSs), and the weight information is also fully unknown, a novel MCDM method based on qualitative flexible multiple criteria (QUALIFLEX) is developed. Firstly, the improved cosine measure of the included angle between two SVNSs is defined.
In this paper, multi-criteria decision-making (MCDM) problems based on the qualitative flexible multiple criteria method (QUALIFLEX) ,in which the criteria values are expressed by multi-valued neutrosophic information, are investigated.
This paper presents three novel single-valued neutrosophic soft set (SVNSS) methods. First, we initiate a new axiomatic definition of single-valued neutrosophic similarity measure, which is expressed by single-valued neutrosophic number (SVNN) that will reduce the information loss and remain more original information.
Making predictions according to historical values has long been regarded as common practice by many researchers. However, forecasting solely based on historical values could lead to inevitable over-complexity and uncertainty due to the uncertainties inside, and the random influence outside, of the data.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
At present, there are many subways being constructed in many cities. In the construction of subways, an appropriate scheme is helpful to save cost and ensure the quality of the project. This paper attaches great importance to present a multi-criteria group decision-making (MCGDM) method to deal with selecting an appropriate construction scheme for subways. The process of selecting an appropriate construction scheme for subways is complex because it includes a great deal of fuzzy and uncertain information which can be presented by multi-valued neutrosophic numbers (MVNNs). In addition, in order to handle the interaction of inputs, an improved generalized multi-valued neutrosophic weighted Heronian mean (IGMVNWHM) operator is introduced. Subsequently, a new distance measure between two MVNNs is defined for deriving the objective criteria weights.
Neutrosophic set, initiated by Smarandache, is a novel tool to deal with vagueness considering the truth-membership T, indeterminacy-membership I and falsity-membership F satisfying the condition 0 ≤ T + I + F ≤ 3. It can be used to characterize the uncertain information more sufficiently and accurately than intuitionistic fuzzy set. Neutrosophic set has attracted great attention of many scholars that have been extended to new types and these extensions have been used in many areas such as aggregation operators, decision making, image processing, information measures, graph and algebraic structures.