In the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture.
This volume contains the proceedings of the 2017 Georgia International Topology Conference, held from May 22–June 2, 2017, at the University of Georgia, Athens, Georgia. The papers contained in this volume cover topics ranging from symplectic topology to classical knot theory to topology of 3- and 4-dimensional manifolds to geometric group theory. Several papers focus on open problems, while other papers present new and insightful proofs of classical results. Taken as a whole, this volume captures the spirit of the conference, both in terms of public lectures and informal conversations, and presents a sampling of some of the great new ideas generated in topology over the preceding eight years.
The authors prove an analogue of the Kotschick–Morgan Conjecture in the context of monopoles, obtaining a formula relating the Donaldson and Seiberg–Witten invariants of smooth four-manifolds using the -monopole cobordism. The main technical difficulty in the -monopole program relating the Seiberg–Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible monopoles, namely the moduli spaces of Seiberg–Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the moduli space of monopoles. In this monograph, the authors prove—modulo a gluing theorem which is an extension of their earlier work—that these intersection pairings can be expressed in terms of topological data and Seiberg–Witten invariants of the four-manifold. Their proofs that the -monopole cobordism yields both the Superconformal Simple Type Conjecture of Moore, Mariño, and Peradze and Witten's Conjecture in full generality for all closed, oriented, smooth four-manifolds with and odd appear in earlier works.
The automorphisms of a two-generator free group F acting on the space of orientation-preserving isometric actions of F on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group on by polynomial automorphisms preserving the cubic polynomial and an area form on the level surfaces .
Conformal nets provide a mathematical model for conformal field theory. The authors define a notion of defect between conformal nets, formalizing the idea of an interaction between two conformal field theories. They introduce an operation of fusion of defects, and prove that the fusion of two defects is again a defect, provided the fusion occurs over a conformal net of finite index. There is a notion of sector (or bimodule) between two defects, and operations of horizontal and vertical fusion of such sectors. The authors' most difficult technical result is that the horizontal fusion of the vacuum sectors of two defects is isomorphic to the vacuum sector of the fused defect. Equipped with this isomorphism, they construct the basic interchange isomorphism between the horizontal fusion of two vertical fusions and the vertical fusion of two horizontal fusions of sectors.
This paper is an interval dynamics counterpart of three theories founded earlier by the authors, S. Smirnov and others in the setting of the iteration of rational maps on the Riemann sphere: the equivalence of several notions of non-uniform hyperbolicity, Geometric Pressure, and Nice Inducing Schemes methods leading to results in thermodynamical formalism. The authors work in a setting of generalized multimodal maps, that is, smooth maps f of a finite union of compact intervals Iˆ in R into R with non-flat critical points, such that on its maximal forward invariant set K the map f is topologically transitive and has positive topological entropy. They prove that several notions of non-uniform hyperbolicity of f|K are equivalent (including uniform hyperbolicity on periodic orbits, TCE & all periodic orbits in K hyperbolic repelling, Lyapunov hyperbolicity, and exponential shrinking of pull-backs). They prove that several definitions of geometric pressure P(t), that is pressure for the map f|K and the potential −tlog|f′|, give the same value (including pressure on periodic orbits, “tree” pressure, variational pressures and conformal pressure). Finally they prove that, provided all periodic orbits in K are hyperbolic repelling, the function P(t) is real analytic for t between the “condensation” and “freezing” parameters and that for each such t there exists unique equilibrium (and conformal) measure satisfying strong statistical properties.
Let Q be a quiver of extended Dynkin type D˜n. In this first of two papers, the authors show that the quiver Grassmannian Gre–(M) has a decomposition into affine spaces for every dimension vector e– and every indecomposable representation M of defect −1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of Gre–(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.
The authors study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. They develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. They complement their generic results with the detailed study of many important special cases. In particular they study crossed products of tensor algebras, triangular AF algebras and various associated C -algebras. They make contributions to the study of C -envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. They also answer questions from the pertinent literature.
In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0,1]n are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0,1]n, density of the medium is homogeneous and represented by the Lebesgue measure. The author's study includes densities which are singular to the homogeneous one. He establishes a rich class of measures called measures having weak exponential decay. This class contains measures which are singular to the homogeneous one such as Liouville measures on [0,1]2 and self-similar measures. The author shows the existence of time changed process and associated jointly continuous heat kernel for this class of measures. Furthermore, he obtains diagonal lower and upper estimates of the heat kernel as time tends to 0. In particular, to express the principal part of the lower diagonal heat kernel estimate, he introduces “protodistance” associated with the density as a substitute of ordinary metric. If the density has the volume doubling property with respect to the Euclidean metric, the protodistance is shown to produce metrics under which upper off-diagonal sub-Gaussian heat kernel estimate and lower near diagonal heat kernel estimate will be shown.
The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.