A Modern Approach to Regression with R

A Modern Approach to Regression with R

Author: Simon Sheather

Publisher: Springer Science & Business Media

Published: 2009-02-27

Total Pages: 398

ISBN-13: 0387096086

DOWNLOAD EBOOK

This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.


A Modern Approach to Regression with R

A Modern Approach to Regression with R

Author: Simon Sheather

Publisher: Springer Science & Business Media

Published: 2009-03-11

Total Pages: 398

ISBN-13: 0387096078

DOWNLOAD EBOOK

This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.


Linear Models with R

Linear Models with R

Author: Julian J. Faraway

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 284

ISBN-13: 1439887349

DOWNLOAD EBOOK

A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models


Modern Statistics with R

Modern Statistics with R

Author: Måns Thulin

Publisher: CRC Press

Published: 2024-08-20

Total Pages: 0

ISBN-13: 9781032512440

DOWNLOAD EBOOK

The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.


Modern Regression Techniques Using R

Modern Regression Techniques Using R

Author: Daniel B Wright

Publisher: SAGE

Published: 2009-02-19

Total Pages: 217

ISBN-13: 1446206025

DOWNLOAD EBOOK

Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.


Modern Data Science with R

Modern Data Science with R

Author: Benjamin S. Baumer

Publisher: CRC Press

Published: 2021-03-31

Total Pages: 830

ISBN-13: 0429575394

DOWNLOAD EBOOK

From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.


Learning Statistics with R

Learning Statistics with R

Author: Daniel Navarro

Publisher: Lulu.com

Published: 2013-01-13

Total Pages: 617

ISBN-13: 1326189727

DOWNLOAD EBOOK

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com


Regression & Linear Modeling

Regression & Linear Modeling

Author: Jason W. Osborne

Publisher: SAGE Publications

Published: 2016-03-24

Total Pages: 489

ISBN-13: 1506302750

DOWNLOAD EBOOK

In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.


The R Book

The R Book

Author: Michael J. Crawley

Publisher: John Wiley & Sons

Published: 2007-06-13

Total Pages: 953

ISBN-13: 9780470515068

DOWNLOAD EBOOK

The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.


Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models

Author: John Fox

Publisher: SAGE Publications

Published: 2015-03-18

Total Pages: 612

ISBN-13: 1483321312

DOWNLOAD EBOOK

Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.