The fusion of information from sensors with different physical characteristics, such as sight, touch, sound, etc., enhances the understanding of our surroundings and provides the basis for planning, decision-making, and control of autonomous and intelligent machines.The minimal representation approach to multisensor fusion is based on the use of an information measure as a universal yardstick for fusion. Using models of sensor uncertainty, the representation size guides the integration of widely varying types of data and maximizes the information contributed to a consistent interpretation.In this book, the general theory of minimal representation multisensor fusion is developed and applied in a series of experimental studies of sensor-based robot manipulation. A novel application of differential evolutionary computation is introduced to achieve practical and effective solutions to this difficult computational problem.
Problems demanding globally optimal solutions are ubiquitous, yet many are intractable when they involve constrained functions having many local optima and interacting, mixed-type variables. The differential evolution (DE) algorithm is a practical approach to global numerical optimization which is easy to understand, simple to implement, reliable, and fast. Packed with illustrations, computer code, new insights, and practical advice, this volume explores DE in both principle and practice. It is a valuable resource for professionals needing a proven optimizer and for students wanting an evolutionary perspective on global numerical optimization.
Differential evolution has proven itself a very simple while very powerful stochastic global optimizer. It has been applied to solve problems in many scientific and engineering fields. This book focuses on applications of differential evolution in electromagnetics to showcase its achievement and capability in solving synthesis and design problems in electromagnetics.Topics covered in this book include:• A comprehensive up-to-date literature survey on differential evolution• A systematic description of differential evolution• A topical review on applications of differential evolution in electromagnetics• Five new application examplesThis book is ideal for electromagnetic researchers and people in differential evolution community. It is also a valuable reference book for researchers and students in the optimization or electrical and electronic engineering field. In addition, managers and engineers in relevant fields will find it a helpful introductory guide.
Differential evolution is a very simple but very powerful stochastic optimizer. Since its inception, it has proved very efficient and robust in function optimization and has been applied to solve problems in many scientific and engineering fields. In Differential Evolution , Dr. Qing begins with an overview of optimization, followed by a state-of-the-art review of differential evolution, including its fundamentals and up-to-date advances. He goes on to explore the relationship between differential evolution strategies, intrinsic control parameters, non-intrinsic control parameters, and problem features through a parametric study. Findings and recommendations on the selection of strategies and intrinsic control parameter values are presented. Lastly, after an introductory review of reported applications in electrical and electronic engineering fields, different research groups demonstrate how the methods can be applied to such areas as: multicast routing, multisite mapping in grid environments, antenna arrays, analog electric circuit sizing, electricity markets, stochastic tracking in video sequences, and color quantization. Contains a systematic and comprehensive overview of differential evolution Reviews the latest differential evolution research Describes a comprehensive parametric study conducted over a large test bed Shows how methods can be practically applied to mobile communications grid computing circuits image processing power engineering Sample applications demonstrated by research groups in the United Kingdom, Australia, Italy, Turkey, China, and Eastern Europe Provides access to companion website with code examples for download Differential Evolution is ideal for application engineers, who can use the methods described to solve specific engineering problems. It is also a valuable reference for post-graduates and researchers working in evolutionary computation, design optimization and artificial intelligence. Researchers in the optimization field or engineers and managers involved in operations research will also find the book a helpful introduction to the topic.
Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.