The Moduli Space of Curves

The Moduli Space of Curves

Author: Robert H. Dijkgraaf

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 570

ISBN-13: 1461242649

DOWNLOAD EBOOK

The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.


The Geometry of Moduli Spaces of Sheaves

The Geometry of Moduli Spaces of Sheaves

Author: Daniel Huybrechts

Publisher: Cambridge University Press

Published: 2010-05-27

Total Pages: 345

ISBN-13: 1139485822

DOWNLOAD EBOOK

This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.


Moduli of Curves

Moduli of Curves

Author: Joe Harris

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 381

ISBN-13: 0387227377

DOWNLOAD EBOOK

A guide to a rich and fascinating subject: algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.


Kähler Metric and Moduli Spaces

Kähler Metric and Moduli Spaces

Author: T. Ochiai

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 472

ISBN-13: 1483214672

DOWNLOAD EBOOK

Kähler Metric and Moduli Spaces, Volume 18-II covers survey notes from the expository lectures given during the seminars in the academic year of 1987 for graduate students and mature mathematicians who were not experts on the topics considered during the sessions about partial differential equations. The book discusses basic facts on Einstein metrics in complex geometry; Einstein-Kähler metrics with positive or non-positive Ricci curvature; Yang-Mills connections; and Einstein-Hermitian metrics. The text then describes the tangent sheaves of minimal varieties; Ricci-Flat Kähler metrics on affine algebraic manifolds; and degenerations of Kähler-Einstein. The moduli of Einstein metrics on a K3 surface and degeneration of Type I and the uniformization of complex surfaces are also considered. Mathematicians and graduate students taking differential and analytic geometry will find the book useful.


Complex Geometry and Dynamics

Complex Geometry and Dynamics

Author: John Erik Fornæss

Publisher: Springer

Published: 2015-11-05

Total Pages: 316

ISBN-13: 3319203371

DOWNLOAD EBOOK

This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world’s leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.


Birational Geometry of Hypersurfaces

Birational Geometry of Hypersurfaces

Author: Andreas Hochenegger

Publisher: Springer Nature

Published: 2019-10-08

Total Pages: 301

ISBN-13: 3030186385

DOWNLOAD EBOOK

Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results. The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side. Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.


3264 and All That

3264 and All That

Author: David Eisenbud

Publisher: Cambridge University Press

Published: 2016-04-14

Total Pages: 633

ISBN-13: 1107017084

DOWNLOAD EBOOK

3264, the mathematical solution to a question concerning geometric figures.


Snowbird Lectures in Algebraic Geometry

Snowbird Lectures in Algebraic Geometry

Author: Ravi Vakil

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 202

ISBN-13: 0821837192

DOWNLOAD EBOOK

A significant part of the 2004 Summer Research Conference on Algebraic Geometry (Snowbird, UT) was devoted to lectures introducing the participants, in particular, graduate students and recent Ph.D.'s, to a wide swathe of algebraic geometry and giving them a working familiarity with exciting, rapidly developing parts of the field. One of the main goals of the organizers was to allow the participants to broaden their horizons beyond the narrow area in which they are working. A fine selection of topics and a noteworthy list of contributors made the resulting collection of articles a useful resource for everyone interested in getting acquainted with the modern topic of algebraic geometry. The book consists of ten articles covering, among others, the following topics: the minimal model program, derived categories of sheaves on algebraic varieties, Kobayashi hyperbolicity, groupoids and quotients in algebraic geometry, rigid analytic varieties, and equivariant cohomology. Suitable for independent study, this unique volume is intended for graduate students and researchers interested in algebraic geometry.


Standard Model and Beyond

Standard Model and Beyond

Author: M. Zrałek

Publisher: Nova Publishers

Published: 1992

Total Pages: 446

ISBN-13: 9781560720270

DOWNLOAD EBOOK

Standard Model & Beyond Proceedings Of The Xiii International School Of Theoretical Physics - Szczyrk, September 19-26 1989, University Of Silesia, Katowice